ISSN: 0377 - 2969 (print), 2306 - 1448 (online)

Research Article

Remarks on (1,2)*-αĝ-Homeomorphisms

T. Salai Parkunan^{1*}, S. Pious Missier², Ravi³ and A. Pandi³

¹Department of Mathematics, Arul Anandar College, Karumathur, Madurai-Dt, Tamil Nadu, India

²Department of Mathematics, V. O. Chidambaram College, Thoothukudi, Tamil Nadu, India

³Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai-Dt, Tamil Nadu, India

Abstract: The aim of this paper is to introduce two new class of functions called $(1,2)^*$ - $\alpha \hat{g}$ -homeomorphisms and strongly $(1,2)^*$ - $\alpha \hat{g}$ -homeomorphisms using $(1,2)^*$ - $\alpha \hat{g}$ -closed sets and study their basic properties in bitopological spaces.

2000 Mathematics Subject Classification: 54E55

Keywords and Phrases : $(1,2)^*$ - α ĝ-closed set, $(1,2)^*$ - α ĝ-open set, $(1,2)^*$ - α ĝ-continuous function, $(1,2)^*$ - α ĝ-continuous function, $(1,2)^*$ - α ĝ-irresolute function, pre- $(1,2)^*$ - α -closed function, $(1,2)^*$ -gc-irresolute function.

1. INTRODUCTION

Njastad [16] introduced α -open sets. Maki et al. [14] generalized the concepts of closed sets to α -generalized closed (briefly αg -closed) sets which are strictly weaker than α -closed sets. Veera Kumar [30] defined \hat{g} -closed sets in topological spaces. El Monsef et al. [1] introduced $\alpha \hat{g}$ -closed sets which lie between α -closed sets and αg -closed sets in topological spaces.

Maki et al [15] introduced the notion of generalized homeomorphisms (briefly g-homeomorphism) which are generalizations of homeomorphisms in topological spaces. Subsequently, Devi et al [6] introduced two class of functions called generalized semi-homeomorphisms (briefly gs-homeomorphism) and semi-generalized homeomorphisms (briefly sg-homeomorphism). Quite recently, Zbigniew Duszynski [32] has introduced αĝ-homeomorphisms in topological spaces.

It is well-known that the above mentioned

topological sets and functions have been generalized to bitopological settings due to the efforts of many modern topologists [see 7, 9, 10, 17-26]. In this present paper, we introduce two new class of bitopological functions called $(1,2)^*$ - α ĝ-homeomorphisms and strongly $(1,2)^*$ - α ĝ-homeomorphisms by using $(1,2)^*$ - α ĝ-closed sets. Basic properties of these two functions are studied and the relation between these types and other existing ones are established.

2. PRELIMINARIES

Throughout this paper, (X, τ_1, τ_2) , (Y, σ_1, σ_2) and (Z, η_1, η_2) (briefly, X, Y and Z) will denote bitopological spaces.

2.1. Definition

Let S be a subset of a bitopological space X. Then S is said to be $\tau_{1,2}$ -open [9] if $S = A \cup B$, where $A \in \tau_1$ and $B \in \tau_2$.

The complement of $\tau_{1,2}$ -open set is called $\tau_{1,2}$ -

Received, August 2012; Accepted, April 2013

closed.

Notice that $\tau_{1,2}$ -open sets need not necessarily form a topology.

2.2. Definition [9]

Let S be a subset of a bitopological space X. Then

- (1) the $\tau_{1,2}$ -closure of S, denoted by $\tau_{1,2}$ -cl(S), is defined as $\cap \{F : S \subseteq F \text{ and } F \text{ is } \tau_{1,2}\text{-closed}\}$.
- (2 the $\tau_{1,2}$ -interior of S, denoted by $\tau_{1,2}$ -int(S), is defined as $\cup \{F : F \subseteq S \text{ and } F \text{ is } \tau_{1,2}\text{-open}\}.$

2.3. Definition

A subset A of a bitopological space X is called

- (1) (1,2)*-semi-open set [10] if $A \subseteq \tau_{1,2}$ -cl($\tau_{1,2}$ -int(A)).
- (2) $(1,2)^*$ - α -open set [10] if $A \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ - $cl(\tau_{1,2}$ -int(A))).
- (3) regular $(1,2)^*$ -open set [17] if $A = \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)).

The complements of the above mentioned open sets are called their respective closed sets.

The $(1,2)^*$ -semi-closure (resp. $(1,2)^*$ - α -closure) of a subset A of a bitopological space X, denoted by $(1,2)^*$ -scl(A) (resp. $(1,2)^*$ - α cl(A)), is the intersection of all $(1,2)^*$ -semi-closed (resp. $(1,2)^*$ - α -closed) sets of X containing A.

2.4. Definition

A subset A of a bitopological space X is called

- (1,2)*-generalized closed (briefly, (1,2)*-g-closed) [19] if τ_{1,2}-cl(A) ⊆ U whenever A ⊆ U and U is τ_{1,2}-open in X.
- (2) (1,2)*-semi-generalized closed (briefly, (1,2)*-sg-closed) [21] if (1,2)*-scl(A) ⊆ U whenever A ⊆ U and U is (1,2)*-semi-open in X.
- (3) (1,2)*-generalized semi-closed (briefly, (1,2)*-gs-closed) [22] if (1,2)*-scl(A) \subseteq U whenever A \subseteq U and U is τ_1 ,-open in X.
- (4) $(1,2)^*$ - \hat{g} -closed [7] if $\tau_{1,2}$ -cl(A) \subseteq U whenever A \subseteq U and U is $(1,2)^*$ -semi-open in X.
- (5) $(1,2)^*$ -ag-closed [18] if $(1,2)^*$ -acl(A) \subseteq U whenever A \subseteq U and U is $\tau_{1,2}$ -open in X.

The complements of the above mentioned closed sets are called their respective open sets.

(6) $(1,2)^*$ - $\alpha \hat{g}$ -closed [7] if $(1,2)^*$ - $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ - \hat{g} -open in X.

2.5. Definition

A function f: (X, τ_1 , τ_2) \rightarrow (Y, σ_1 , σ_2) is called (1,2)*-g-open [22] (resp. (1,2)*-ĝ-open [26], (1,2)*-open [20], (1,2)*-sg-open [22], (1,2)*-g-open [22], (1,2)*-α-open [26], (1,2)*-α-open [26], (1,2)*-α-open [26], (1,2)*-α-open [26]) if the image of every $\tau_{1,2}$ -open set in X is (1,2)*-g-open (resp. (1,2)*-ĝ-open, $\sigma_{1,2}$ -open, (1,2)*-sg-open, (1,2)*-α-open, (1,2)*-α-open

2.6. Definition

A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called

- (1) (1,2)*-g-continuous [21] if $f^1(V)$ is (1,2)*-g-closed in X, for every $\sigma_{1,2}$ -closed set V of Y.
- (2) (1,2)*-sg-continuous [21] if $f^1(V)$ is (1,2)*-sg-closed in X, for every $\sigma_{1,2}$ -closed set V of Y.
- (3) (1,2)*-gs-continuous [21] if $f^1(V)$ is (1,2)*-gs-closed in X, for every $\sigma_{1,2}$ -closed set V of Y.
- (4) $(1,2)^*$ - \hat{g} -continuous [23] if $f^1(V)$ is $(1,2)^*$ - \hat{g} -closed in X, for every $\sigma_{1,2}$ -closed set V of Y.
- (5) (1,2)*-continuous [17] if $f^1(V)$ is $\tau_{1,2}$ -closed in X, for every $\sigma_{1,2}$ -closed set V of Y.

2.7. Definition [22]

A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called

- (1) (1,2)*-g-homeomorphism if f is bijection, (1,2)*-g-open and (1,2)*-g-continuous.
- (2) (1,2)*-sg-homeomorphism if f is bijection, (1,2)*-sg-open and (1,2)*-sg-continuous.
- (3) (1,2)*-gs-homeomorphism if f is bijection, (1,2)*-gs-open and (1,2)*-gs-continuous.
- (4) (1,2)*-homeomorphism if f is bijection, (1,2)*-open and (1,2)*-continuous.

2.8. Definition [26]

A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called

- (1) $(1,2)^*$ - α -continuous if $f^1(V)$ is $(1,2)^*$ - α -open in X, for every $\sigma_{1,2}$ -open set V of Y.
- (2) $(1,2)^*$ - $\alpha \hat{g}$ -continuous if $f^1(V)$ is $(1,2)^*$ - $\alpha \hat{g}$ -closed in X, for every $\sigma_{1,2}$ -closed set V of Y.
- (3) $(1,2)^*$ - $\alpha \hat{g}$ -irresolute if $f^1(V)$ is $(1,2)^*$ - $\alpha \hat{g}$ -closed in X, for every $(1,2)^*$ - $\alpha \hat{g}$ -closed set V of Y.

2.9. Definition [25]

A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called

- pre-(1,2)*-α-closed (resp. pre (1,2)*-α-open) if the image of every (1,2)*-α-closed (resp. (1,2)*-α-open) in X is (1,2)*-α-closed (resp. (1,2)*-α-open) in Y.
- (2) $(1,2)^*$ - α -irresolute if $f^1(V)$ is $(1,2)^*$ - α -open in X, for every $(1,2)^*$ - α -open set V of Y.
- (3) (1,2)*-gc-irresolute if f¹(V) is (1,2)*-g-closed in X, for every (1,2)*-g-closed set V of Y.
- (4) $(1,2)^*$ - α -homeomorphism if f is bijection, $(1,2)^*$ - α -irresolute and pre- $(1,2)^*$ - α -closed.

2.10. Remark [7]

- (1) Every $(1,2)^*$ - α -closed set is $(1,2)^*$ - α \hat{g} -closed but not conversely.
- (2) Every $(1,2)^*$ -a \hat{g} -open set is $(1,2)^*$ -gs-open but not conversely.

3. (1,2)*-AĜ-HOMEOMORPHISMS

3.1. Definition

- (1) A bijective function $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called a strongly $(1,2)^*$ - $\alpha \hat{g}$ -closed (resp. strongly $(1,2)^*$ - $\alpha \hat{g}$ -open) if the image of every $(1,2)^*$ - $\alpha \hat{g}$ -closed (resp. $(1,2)^*$ - $\alpha \hat{g}$ -open) set in X is $(1,2)^*$ - $\alpha \hat{g}$ -closed (resp. $(1,2)^*$ - $\alpha \hat{g}$ -open) of Y.
- (2) A bijective function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called an $(1,2)^*$ - $\alpha \hat{g}$ -homeomorphism if f is both $(1,2)^*$ - $\alpha \hat{g}$ -open and $(1,2)^*$ - $\alpha \hat{g}$ -continuous.

3.2. Theorem

Every $(1,2)^*$ -homeomorphism is $(1,2)^*$ - $\alpha \hat{g}$ -homeomorphism.

Proof

Let $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be $(1,2)^*$ -homeomorphism. Then f is bijective, $(1,2)^*$ -open and $(1,2)^*$ -continuous function. Let U be an $\tau_{1,2}$ -open set in X. Since f is $(1,2)^*$ -open function, f(U) is an $\sigma_{1,2}$ -open set in Y. Every $\tau_{1,2}$ -open set is $(1,2)^*$ - $\alpha \hat{g}$ -open and hence f(U) is $(1,2)^*$ - $\alpha \hat{g}$ -open in Y. This implies f is $(1,2)^*$ - $\alpha \hat{g}$ -open. Let V be a $\sigma_{1,2}$ -closed set in Y. Since f is $(1,2)^*$ -continuous, $f^1(V)$ is $\tau_{1,2}$ -closed in X. Thus $f^1(V)$ is $(1,2)^*$ - $\alpha \hat{g}$ -closed in X and therefore, f is $(1,2)^*$ - $\alpha \hat{g}$ -continuous. Hence, f is an $(1,2)^*$ - $\alpha \hat{g}$ -homeomorphism.

3.3. Remark

The converse of Theorem 3.2 need not be true as shown in the following example.

3.4. Example

Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, X, \{a, b\}\}$. Then the sets in $\{\phi, X, \{a, b\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{c\}\}$ are called $\tau_{1,2}$ -closed. Also the sets in $\{\phi, X, \{c\}, \{a, c\}, \{b, c\}\}$ are called $(1,2)^*$ - $\alpha \hat{g}$ -closed in X and the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ are called $(1,2)^*$ - $\alpha \hat{g}$ -open in X. Let $Y = \{a, b, c\}$, $\sigma_1 = \{\phi, Y, \{a\}\}$ and $\sigma_2 = \{\phi, Y, \{b\}\}$. Then the sets in $\{\phi, Y, \{a\}, \{b\}, \{a, b\}\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{c\}, \{a, c\}, \{b, c\}\}\}$ are called $(1,2)^*$ - $\alpha \hat{g}$ -closed in Y and the sets in $\{\phi, Y, \{a\}, \{b\}, \{a, b\}\}\}$ are called $(1,2)^*$ - $\alpha \hat{g}$ -open in Y. Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be the identity function. Then f is a $(1,2)^*$ - $\alpha \hat{g}$ -homeomorphism but f is not a $(1,2)^*$ -homeomorphism.

3.5. Proposition

For any bijective function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ the following statements are equivalent.

- (1) $f^{-1}: (Y, \sigma_1, \sigma_2) \rightarrow (X, \tau_1, \tau_2)$ is $(1,2)^*-\alpha \hat{g}$ continuous function.
- (2) f is a $(1,2)^*$ -aĝ-open function.
- (3) f is a $(1,2)^*$ -ag-closed function.

Proof

(1) \Rightarrow (2): Let U be an $\tau_{1,2}$ -open set in X. Then X – U is $\tau_{1,2}$ -closed in X. Since f^1 is $(1,2)^*$ - $\alpha \hat{g}$ -continuous, $(f^1)^{-1}(X - U)$ is $(1,2)^*$ - $\alpha \hat{g}$ -closed in Y. That is f(X - U) = Y - f(U) is $(1,2)^*$ -

 $\alpha \hat{g}$ -closed in Y. This implies f(U) is $(1,2)^*$ - $\alpha \hat{g}$ -open in Y. Hence f is $(1,2)^*$ - $\alpha \hat{g}$ -open function.

- (2) \Rightarrow (3): Let F be a $\tau_{1,2}$ -closed set in X. Then X F is $\tau_{1,2}$ -open in X. Since f is $(1,2)^*$ - $\alpha \hat{g}$ -open, f(X-F) is $(1,2)^*$ - $\alpha \hat{g}$ -open set in Y. That is Y f(F) is $(1,2)^*$ - $\alpha \hat{g}$ -open in Y. This implies that f(F) is $(1,2)^*$ - $\alpha \hat{g}$ -closed in Y. Hence f is $(1,2)^*$ - $\alpha \hat{g}$ -closed.
- (3) \Rightarrow (1): Let V be a $\tau_{1,2}$ -closed set in X. Since f is $(1,2)^*$ - α \hat{g} -closed function, f(V) is $(1,2)^*$ - α \hat{g} -closed in Y. That is $(f^1)^{-1}(V)$ is $(1,2)^*$ - α \hat{g} -closed in Y. Hence f^1 is $(1,2)^*$ - α \hat{g} -continuous.

3.6. Proposition

Let f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a bijective and $(1,2)^*$ - α ĝ-continuous function. Then the following statements are equivalent:

- (1) f is a $(1,2)^*$ -aĝ-open function.
- (2) f is a $(1,2)^*$ -aĝ-homeomorphism.
- (3) f is a $(1,2)^*$ -ag-closed function.

Proof

- ⇒ (2): Let f be a (1,2)*-αĝ-open function. By hypothesis, f is bijective and (1,2)*-αĝ-continuous. Hence f is a (1,2)*-αĝ-homeomorphism.
- (2) \Rightarrow (3): Let f be a $(1,2)^*$ - $\alpha \hat{g}$ -homeomorphism. Then f is $(1,2)^*$ - $\alpha \hat{g}$ -open. By Proposition 3.5, f is $(1,2)^*$ - $\alpha \hat{g}$ -closed function.
- (3) \Rightarrow (1): It is obtained from Proposition 3.5.

3.7. Theorem

Every $(1,2)^*$ - α -homeomorphism is $(1,2)^*$ - α \hat{g} -homeomorphism.

Proof

Let $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a $(1,2)^*-\alpha$ -homeomorphism. Then f is bijective, $(1,2)^*-\alpha$ -irresolute and pre- $(1,2)^*-\alpha$ -closed. Let F be $\tau_{1,2}$ -closed in X. Then F is $(1,2)^*-\alpha$ -closed in X. Since f is pre- $(1,2)^*-\alpha$ -closed, f(F) is $(1,2)^*-\alpha$ -closed in Y. Every $(1,2)^*-\alpha$ -closed set is $(1,2)^*-\alpha$ -closed and hence f(F) is $(1,2)^*-\alpha$ -closed function. Let Y be a $\sigma_{1,2}$ -closed in Y.

set of Y. Thus V is $(1,2)^*$ - α -closed in Y. Since f is $(1,2)^*$ - α -irresolute $f^1(V)$ is $(1,2)^*$ - α -closed in X. Thus $f^1(V)$ is $(1,2)^*$ - α ĝ-closed in X. Therefore f is $(1,2)^*$ - α ĝ-continuous. Hence f is a $(1,2)^*$ - α ĝ-homeomorphism.

3.8. Remark

The following Example shows that the converse of Theorem 3.7 need not be true.

3.9. Example

Let $X = \{a, b, c\}, \tau_1 = \{\phi, X\} \text{ and } \tau_2 = \{\phi, X, \{a\}\}.$ Then the sets in $\{\phi, X, \{a\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{b, c\}\}$ are called $\tau_{1,2}$ -closed. Also the sets in $\{\phi, X, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}\$ are called $(1,2)^*$ - $\alpha \hat{g}$ -closed in X and the sets in $\{\phi,$ $X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}$ are called $(1,2)^*$ - α g-open in X. Moreover, the sets in $\{\phi, X, \{a\}, \{a, a\}\}$ b}, $\{a, c\}$ } are called $(1,2)^*-\alpha$ -closed in X and the sets in $\{\phi, X, \{b\}, \{c\}, \{b, c\}\}\$ are called $(1,2)^*$ - α -open in X. Let Y = {a, b, c}, σ_1 = { ϕ , Y} and $\sigma_{2} = \{ \phi, Y, \{a, b\} \}$. Then the sets in $\{ \phi, Y, \{a, b\} \}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{c\}\}\$ are called σ_1 -closed. Also the sets in $\{\phi, Y, \{c\}, \{a, \}\}$ c}, $\{b, c\}$ } are called $(1,2)*-\alpha\hat{g}$ -closed in Y and the sets in $\{\phi, Y, \{a\}, \{b\}, \{a, b\}\}\$ are called $(1,2)^*$ - α g-open in Y. Moreover, the sets in $\{\phi, Y, \{a, b\}\}\$ are called $(1,2)^*$ - α -closed in Y and the sets in $\{\phi,$ Y, $\{c\}$ are called $(1,2)^*$ - α -open in Y. Let $f:(X,\tau)$ $\tau_2 \rightarrow (Y, \sigma_1, \sigma_2)$ be the identity function. Then f is a $(1,2)^*$ - α ĝ-homeomorphism but f is not a $(1,2)^*$ - α homeomorphism.

3.10. Remark

Next Example shows that the composition of two $(1,2)^*$ - $\alpha \hat{g}$ -homeomorphisms is not always a $(1,2)^*$ - $\alpha \hat{g}$ -homeomorphism.

3.11. Example

 {a, b}, {a, c}, {b, c}} are called $(1,2)^*$ - $\alpha \hat{g}$ -closed in Y and the sets in { ϕ , Y, {a}, {b}, {c}, {a, b}, {a, c}} are called $(1,2)^*$ - $\alpha \hat{g}$ -open in Y. Let $Z = \{a, b, c\}$, $\eta_1 = \{\phi, Z\}$ and $\eta_2 = \{\phi, Z, \{a, b\}\}$. Then the sets in { ϕ , Z, {a, b}} are called $\eta_{1,2}$ -open and the sets in { ϕ , Z, {c}} are called $\eta_{1,2}$ -closed. Also the sets in { ϕ , Z, {c}} are called $\eta_{1,2}$ -closed. Also the sets in { ϕ , Z, {c}, {a, c}, {b, c}} are called $(1,2)^*$ - $\alpha \hat{g}$ -closed in Z and the sets in { ϕ , Z, {a}, {b}, {a, b}} are called $(1,2)^*$ - $\alpha \hat{g}$ -open in Z. Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ and $g: (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2)$ be two identity functions. Then both f and g are $(1,2)^*$ - $\alpha \hat{g}$ -homeomorphisms. The set {a, c} is $\tau_{1,2}$ -open in X, but (g o f)({a, c}) = {a, c} is not $(1,2)^*$ - $\alpha \hat{g}$ -open and hence g o f is not $(1,2)^*$ - $\alpha \hat{g}$ -homeomorphism.

3.12. Theorem

Every $(1,2)^*$ - α ĝ-homeomorphism is $(1,2)^*$ -gs-homeomorphism but not conversely.

Proof

Let $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a $(1,2)^*$ - $\alpha \hat{g}$ -homeomorphism. Then f is a bijective, $(1,2)^*$ - $\alpha \hat{g}$ -open and $(1,2)^*$ - $\alpha \hat{g}$ -continuous function. Let U be an $\tau_{1,2}$ -open set in X. Then f(U) is $(1,2)^*$ - $\alpha \hat{g}$ -open in Y. Every $(1,2)^*$ - $\alpha \hat{g}$ -open set is $(1,2)^*$ -gs-open and hence, f(U) is $(1,2)^*$ -gs-open in Y. This implies f is $(1,2)^*$ -gs-open function. Let V be $\sigma_{1,2}$ -closed set in Y. Then $f^1(V)$ is $(1,2)^*$ - $\alpha \hat{g}$ -closed in X. Hence $f^1(V)$ is $(1,2)^*$ -gs-closed in X. This implies f is $(1,2)^*$ -gs-continuous. Hence f is $(1,2)^*$ -gs-homeomorphism.

3.13. Remark

The following Example shows that the converse of Theorem 3.12 need not be true.

3.14. Example

Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X, \{b\}\}$. Then the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{c\}, \{a, c\}, \{b, c\}\}$ are called $\tau_{1,2}$ -closed. Also the sets in $\{\phi, X, \{c\}, \{a, c\}, \{b, c\}\}$ are called $(1,2)^*$ - $\alpha \hat{g}$ -closed in X and the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\}\}\}$ are called $(1,2)^*$ - $\alpha \hat{g}$ -open in X. Moreover, the sets in $\{\phi, X, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}\}$ are called $(1,2)^*$ -gs-closed in X and the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}\}$ are called $(1,2)^*$ -gs-open in X. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, Y, \{a\}\}\}$ and $\sigma_2 = \{\phi, Y, \{b, c\}\}$. Moreover, the sets in $\{\phi, Y, \{a\}, \{b\}, c\}\}$

are called $\sigma_{1,2}$ -open and $\sigma_{1,2}$ -closed. Also the sets in $\{\phi, Y, \{a\}, \{b, c\}\}$ are called $(1,2)^*$ - $\alpha \hat{g}$ -closed and $(1,2)^*$ - $\alpha \hat{g}$ -open in Y. Moreover, the sets in $\{\phi, Y, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ are called $(1,2)^*$ -g-closed and $(1,2)^*$ -g-open in Y. Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be the identity function. Then f is a $(1,2)^*$ -gs-homeomorphism but f is not a $(1,2)^*$ - $\alpha \hat{g}$ -homeomorphism.

3.15. Remark

The following Examples show that the concepts of $(1,2)^*$ - α g-homeomorphisms and $(1,2)^*$ -g-homeomorphisms are independent of each other.

3.16. Example

Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{a, b\}\}\$ and $\tau_2 = \{\phi, X, \{a\}, \{a, b\}\}\$ $\{\phi, X, \{a, c\}\}\$. Then the sets in $\{\phi, X, \{a\}, \{a, b\}, \{a,$ $\{a, c\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \phi\}$ $\{b\}, \{c\}, \{b, c\}\}$ are called τ_{12} -closed. Also the sets in $\{\phi, X, \{b\}, \{c\}, \{b, c\}\}\$ are called $(1,2)^*$ αĝ-closed and (1,2)*-g-closed in X. Moreover, the sets in $\{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}\$ are called $(1,2)^*$ - α ĝ-open and $(1,2)^*$ -ĝ-open in X. Let Y = {a, b, c}, $\sigma_1 = \{\phi, Y, \{b\}\}\$ and $\sigma_2 = \{\phi, Y, \{a, b\}\}\$. Then the sets in $\{\phi, Y, \{b\}, \{a, b\}\}\$ are called σ_1 ,-open and the sets in $\{\phi, Y, \{c\}, \{a, c\}\}\$ are called $\sigma_{1,2}$ closed. Also the sets in $\{\phi, Y, \{a\}, \{c\}, \{a, c\}, \{b, a, c\}\}$ c}} are called $(1,2)*-\alpha \hat{g}$ -closed in Y and the sets in $\{\phi, Y, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}\$ are called $(1,2)^*$ - α g-open in Y. Moreover, the sets in $\{\phi, Y, \{c\}, \{a, a\}\}$ c}, {b, c}} are called (1,2)*-g-closed in Y and the sets in $\{\phi, Y, \{a\}, \{b\}, \{a, b\}\}\$ are called $(1,2)^*$ -gopen in Y. Define a function $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \tau_2)$ σ_2) by f(a) = b, f(b) = a and f(c) = c. Then f is a $(1,2)^*$ - α g-homeomorphism but f is not a $(1,2)^*$ -ghomeomorphism.

3.17. Example

Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X\}$. Then the sets in $\{\phi, X, \{a\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{b, c\}\}$ are called $\tau_{1,2}$ -closed. Also the sets in $\{\phi, X, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ are called $(1,2)^*$ - $\alpha\hat{g}$ -closed and $(1,2)^*$ -g-closed in X. Moreover, the sets in $\{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}\}$ are called $(1,2)^*$ - $\alpha\hat{g}$ -open and $(1,2)^*$ -g-open in X. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, Y, \{a\}\}\}$ and $\sigma_2 = \{\phi, Y, \{b, c\}\}$. Then the sets in $\{\phi, Y, \{a\}, \{b, c\}\}\}$ are called $\sigma_{1,2}$ -open and $\sigma_{1,2}$ -closed. Also the sets in $\{\phi, Y, \{a\}, \{b, c\}\}\}$ are called $(1,2)^*$ - $\alpha\hat{g}$ -closed

and $(1,2)^*-\alpha \hat{g}$ -open in Y. Moreover, the sets in $\{\phi, Y, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ are called $(1,2)^*$ -gs-closed and $(1,2)^*$ -gs-open in Y. Define a function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by f(a) = b, f(b) = c, f(c) = a. Then f is a $(1,2)^*$ -g-homeomorphism but f is not a $(1,2)^*$ - $\alpha \hat{g}$ -homeomorphism.

3.18. Remark

 $(1,2)^*$ - α \hat{g} -homeomorphisms and $(1,2)^*$ -sg-homeomorphisms are independent of each other as shown below.

3.19. Example

The function f defined in Example 3.16 is $(1,2)^*$ - $\alpha \hat{g}$ -homeomorphism but not $(1,2)^*$ -sg-homeomorphism.

3.20. Example

Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}\} \text{ and } \tau_2 = \{\phi, X, \{a\}\} \text{ and } \tau_3 = \{\phi, X, \{a\}\} \text{ and } \tau_4 = \{\phi, X, \{a\}\} \text{ and } \tau_4 = \{\phi, X, \{a\}\} \text{ and } \tau_5 = \{\phi, X, \{a\}\} \text{ and } \tau_6 = \{\phi, X, \{a\}\} \text{ and }$ $\{b\}\}$. Then the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ are called τ_1 ,-open and $(1,2)^*$ - $\alpha \hat{g}$ -open in X; the sets in $\{\phi, X, \{c\}, \{a, c\}, \{b, c\}\}\$ are called τ_1 ,-closed and $\{b\}, \{c\}, \{a, c\}, \{b, c\}\}$ are called $(1,2)^*$ -sg-closed in X and the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b\}, \{a, c\}, \{a, c\}$ $\{b, c\}\}$ are called $(1,2)^*$ -sg-open in X. Let $Y = \{a, a\}$ b, c}, $\sigma_1 = \{\phi, Y, \{a\}\}\$ and $\sigma_2 = \{\phi, Y, \{b, c\}\}\$. Then the sets in $\{\phi, Y, \{a\}, \{b, c\}\}\$ are called σ_1 ,-open and σ_1 -closed. Also the sets in $\{\phi, Y, \{a\}, \{b, c\}\}\$ are called $(1,2)^*$ - α g-closed and $(1,2)^*$ - α g-open in Y. Moreover, the sets in $\{\phi, Y, \{a\}, \{b\}, \{c\}, \{a, a\}\}$ b}, $\{a, c\}$, $\{b, c\}$ } are called $(1,2)^*$ -sg-closed and (1,2)*-sg-open in Y. Define a function $f:(X, \tau_1, \tau_2)$ \rightarrow (Y, σ_1 , σ_2) by f(a) = b, f(b) = a and f(c) = c. Then f is $(1,2)^*$ -sg-homeomorphism but not $(1,2)^*$ αĝ-homeomorphism.

4. STRONGLY (1,2)*-AĜ-HOMEOMORPHISMS

4.1. Definition

A bijection $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be strongly $(1,2)^*$ - α ĝ-inverse f¹ is also $(1,2)^*$ - α ĝ-irresolute and its inverse f¹ is also $(1,2)^*$ - α ĝ-irresolute.

4.2. Theorem

Every strongly $(1,2)^*$ - $\alpha \hat{g}$ -homeomorphism is

(1,2)*-αĝ-homeomorphism.

Proof

Let $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be strongly $(1,2)^*$ - $\alpha \hat{g}$ -homeomorphism. Let U be $\tau_{1,2}$ -open in X. Then U is $(1,2)^*$ - $\alpha \hat{g}$ -open in X. Since f^1 is $(1,2)^*$ - $\alpha \hat{g}$ -irresolute, $(f^1)^{-1}(U)$ is $(1,2)^*$ - $\alpha \hat{g}$ -open in Y. That is f(U) is $(1,2)^*$ - $\alpha \hat{g}$ -open in Y. This implies f is $(1,2)^*$ - $\alpha \hat{g}$ -open function. Let F be a $\sigma_{1,2}$ -closed in Y. Then F is $(1,2)^*$ - $\alpha \hat{g}$ -closed in Y. Since f is $(1,2)^*$ - $\alpha \hat{g}$ -irresolute, $f^1(F)$ is $(1,2)^*$ - $\alpha \hat{g}$ -closed in Y. This implies f is $(1,2)^*$ - $\alpha \hat{g}$ -continuous function. Hence f is $(1,2)^*$ - $\alpha \hat{g}$ -homeomorphism.

4.3. Remark

The following Example shows that the converse of Theorem 4.2 need not be true.

4.4. Example

Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}\}\$ and $\tau_2 = \{\phi, X, \{a\}\}\$ $\{a, c\}$. Then the sets in $\{\phi, X, \{a\}, \{a, c\}\}$ are called τ_1 ,-open and the sets in $\{\phi, X, \{b\}, \{b, c\}\}\$ are called τ_1 ,-closed. Also the sets in $\{\phi, X, \{b\},$ $\{c\}, \{a, b\}, \{b, c\}\}$ are called $(1,2)^*$ - $\alpha \hat{g}$ -closed in X and the sets in $\{\phi, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}\}$ are called $(1,2)^*$ - $\alpha \hat{g}$ -open in X. Let $Y = \{a, b, c\}, \sigma_1 =$ $\{\phi, Y, \{a\}\}\$ and $\sigma_2 = \{\phi, Y\}$. Then the sets in $\{\phi, Y, \{a\}\}\$ $\{a\}\}$ are called σ_1 ,-open and the sets in $\{\phi, Y, \{b, \}\}$ c}} are called σ_1 -closed. Also the sets in $\{\phi, Y, \phi\}$ $\{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ are called $(1,2)^*$ - $\{a, b\}, \{a, c\}\}$ are called $(1,2)^*$ - α ĝ-open in Y. Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be the identity function. Then f is a $(1,2)^*$ - α ĝ-homeomorphism but f is not a strongly $(1,2)*-\alpha \hat{g}$ -homeomorphism.

4.5. Theorem

The composition of two strongly $(1,2)^*$ - α g-homeomorphisms is a strongly $(1,2)^*$ - α g-homeomorphism.

Proof

Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ and $g: (Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2)$ be two strongly $(1,2)^*$ - $\alpha \hat{g}$ -homeomorphisms. Let F be a $(1,2)^*$ - $\alpha \hat{g}$ -closed set in Z. Since g is $(1,2)^*$ - $\alpha \hat{g}$ -irresolute, $g^{-1}(F)$ is $(1,2)^*$ - $\alpha \hat{g}$ -closed in Y. Since f is a $(1,2)^*$ - $\alpha \hat{g}$ -irresolute, $f^{-1}(g^{-1}(F))$ is $(1,2)^*$ - $\alpha \hat{g}$ -closed in X. That is $(g \circ f)^{-1}(F)$ is $(1,2)^*$ - $\alpha \hat{g}$ -closed in X. This implies that $g \circ f: (X, \tau_1, \tau_2) \to (Z, \tau_2)$

 $η_1$, $η_2$) is $(1,2)^*$ -α \hat{g} -irresolute. Let V be a $(1,2)^*$ -α \hat{g} -closed in X. Since f^{-1} is a $(1,2)^*$ -α \hat{g} -irresolute, $(f^{-1})^{-1}(V)$ is $(1,2)^*$ -α \hat{g} -closed in Y. That is f(V) is $(1,2)^*$ -α \hat{g} -closed in Y. Since g^{-1} is a $(1,2)^*$ -α \hat{g} -irresolute, $(g^{-1})^{-1}(f(V))$ is $(1,2)^*$ -α \hat{g} -closed in Z. That is g(f(V)) is $(1,2)^*$ -α \hat{g} -closed in Z. So, $(g \circ f)(V)$ is $(1,2)^*$ -α \hat{g} -closed in Z. This implies that $((g \circ f)^{-1})^{-1}(V)$ is $(1,2)^*$ -α \hat{g} -closed in Z. This shows that $(g \circ f)^{-1}$: $(Z, η_1, η_2) \rightarrow (X, τ_1, τ_2)$ is $(1,2)^*$ -α \hat{g} -irresolute. Hence $g \circ f$ is a strongly $(1,2)^*$ -α \hat{g} -homeomorphism.

We denote the family of all strongly $(1,2)^*$ - α g-homeomorphisms from a bitopological space (X, τ_1, τ_2) onto itself by $(1,2)^*$ -s α g-h(X).

4.6. Theorem

The set $(1,2)^*$ -sa \hat{g} -h(X) is a group under composition of functions.

Proof

By Theorem 4.5, g o $f \in (1,2)^*$ -sa \hat{g} -h(X) for all f, g $\in (1,2)^*$ -sa \hat{g} -h(X). We know that the composition of functions is associative. The identity function belonging to $(1,2)^*$ -sa \hat{g} -h(X) serves as the identity element. If $f \in (1,2)^*$ -sa \hat{g} -h(X), then $f^1 \in (1,2)^*$ -sa \hat{g} -h(X) such that f o $f^1 = f^1$ o f = I and so inverse exists for each element of $(1,2)^*$ -sa \hat{g} -h(X). Hence $(1,2)^*$ -sa \hat{g} -h(X) is a group under the composition of functions.

4.7. Theorem

Let $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a strongly $(1,2)^*$ - $\alpha \hat{g}$ -homeomorphism. Then f induces an $(1,2)^*$ -isomorphism from the group $(1,2)^*$ - $s\alpha \hat{g}$ -h(X) onto the group $(1,2)^*$ - $s\alpha \hat{g}$ -h(Y).

Proof

Using the function f, we define a function θ_f : $(1,2)^*$ -sa\hat{g}-h(X) \rightarrow $(1,2)^*$ -sa\hat{g}-h(Y) by $\theta_f(k) = f$ o k o f¹ for every $k \in (1,2)^*$ -sa\hat{g}-h(X). Then θ_f is a bijection. Further, for all k_1 , $k_2 \in (1,2)^*$ -sa\hat{g}-h(X), $\theta_f(k_1 \circ k_2) = f$ o $(k_1 \circ k_2)$ o f¹= $(f \circ k_1 \circ f^1)$ o $(f \circ k_2 \circ f^1) = \theta_f(k_1)$ o $\theta_f(k_2)$. Therefore θ_f is an $(1,2)^*$ -isomorphism induced by f.

4.8. Remark

The concepts of strongly $(1,2)^*$ - α ĝ-homeomorphisms and $(1,2)^*$ - α -homeomorphisms are independent notions as shown in the following examples.

4.9. Example

Let $X = \{a, b, c\}, \tau_1 = \{\phi, X\} \text{ and } \tau_2 = \{\phi, X, \{a, b\}\}.$ Then the sets in $\{\phi, X, \{a, b\}\}\$ are called τ_1 ,-open and $(1,2)^*$ - α -open; and the sets in $\{\phi, X, \{c\}\}$ are called $\tau_{1,2}$ -closed and $(1,2)^*$ - α -closed. Also the sets in $\{\phi, X, \{c\}, \{a, c\}, \{b, c\}\}\$ are called $(1,2)^*-\alpha\hat{g}$ closed in X and the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\},$ $\{a, b\}\$ are called $(1,2)^*$ - α g-open in X. Let $Y = \{a, a\}$ b, c}, $\sigma_1 = \{\phi, Y, \{a\}\}\$ and $\sigma_2 = \{\phi, Y, \{b\}\}\$. Then the sets in $\{\phi, Y, \{a\}, \{b\}, \{a, b\}\}\$ are called σ_{12} -open and $(1,2)^*$ - α -open; and the sets in $\{\phi, Y, \{c\}, \{a, c\}, \{a, c\},$ {b, c}} are called $\sigma_{1,2}$ -closed and (1,2)*- α -closed in Y. Also the sets in $\{\phi, Y, \{c\}, \{a, c\}, \{b, c\}\}$ are called $(1,2)^*$ - $\alpha \hat{g}$ -closed in Y and the sets in $\{\phi, Y, \phi\}$ $\{a\}, \{b\}, \{a, b\}\}\$ are called $(1,2)^*$ - $\alpha \hat{g}$ -open in Y. Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be the identity function. Then f is a strongly $(1,2)^*$ -aĝ-homeomorphism but f is not $(1,2)^*$ - α -homeomorphism.

4.10. Example

b}}. Then the sets in $\{\phi, X, \{a\}, \{a, b\}\}$ are called τ_1 ,-open and the sets in $\{\phi, X, \{c\}, \{b, c\}\}$ are $\{a, c\}, \{b, c\}\}$ are called $(1,2)^*$ - α g-closed in X and the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ are called $(1,2)^*$ - α ĝ-open in X. Moreover, the sets in $\{\phi, X, \phi\}$ $\{b\}, \{c\}, \{b, c\}\}$ are called $(1,2)^*-\alpha$ -closed in X and the sets in $\{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$ are called $(1,2)^*$ - α -open in X. Let Y = {a, b, c}, $\sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, Y, \{a\}\}\$. Then the sets in $\{\phi, Y, \{a\}\}\$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{b, c\}\}\$ are called σ_{12} -closed. Also the sets in $\{\phi, Y, \{b\}, \{c\},$ $\{a, b\}, \{a, c\}, \{b, c\}\}\$ are called $(1,2)^*-\alpha \hat{g}$ -closed in Y and the sets in $\{\phi, Y, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, b\}\}$ c}} are called $(1,2)^*$ - α ĝ-open in Y. Moreover, the sets in $\{\phi, Y, \{b\}, \{c\}, \{b, c\}\}\$ are called $(1,2)^*-\alpha$ closed in Y and the sets in $\{\phi, Y, \{a\}, \{a, b\}, \{a, b\}\}$ c}} are called $(1,2)^*$ - α -open in Y. Let $f:(X, \tau_1, \tau_2)$ \rightarrow (Y, σ_1 , σ_2) be the identity function. Then f is a $(1,2)^*$ - α -homeomorphism but not strongly $(1,2)^*$ αĝ-homeomorphism.

4.11. Definition

A bijective function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called $(1,2)^*$ -gc-homeomorphism if f is $(1,2)^*$ -gc-irresolute and f^1 is $(1,2)^*$ -gc-irresolute.

4.12. Remark

The concepts of strongly $(1,2)^*$ - α ĝ-homeomorphisms and $(1,2)^*$ -gc-homeomorphisms are independent of each other as the following examples show.

4.13. Example

Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}\} \text{ and } \tau_2 = \{\phi, X, \{a\}\} \text{ and } \tau_3 = \{\phi, X, \{a\}\} \text{ and } \tau_4 = \{\phi, X, \{a\}\} \text{ and } \tau_5 = \{\phi, X, \{a\}\} \text{ and }$ $\{a, b\}\}$. Then the sets in $\{\phi, X, \{a\}, \{a, b\}\}$ are called τ_{12} -open and the sets in $\{\phi, X, \{c\}, \{b, c\}\}\$ are called τ_1 ,-closed. Also the sets in $\{\phi, X, \{b\},$ $\{c\}, \{a, c\}, \{b, c\}\}$ are called $(1,2)^*-\alpha \hat{g}$ -closed in X and the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}\$ are called $(1,2)^*$ -a\hat{g}-open in X. Moreover, the sets in $\{\phi, X, \{c\}, \{a, c\}, \{b, c\}\}\$ are called $(1,2)^*$ -gclosed in X and the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\}\}\$ are called $(1,2)^*$ -g-open in X. Let $Y = \{a, b, c\}, \sigma$ = $\{\phi, Y, \{b\}, \{a, b\}\}\$ and $\sigma_2 = \{\phi, Y, \{a\}, \{a, c\}\}\$. Then the sets in $\{\phi, Y, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ are called σ_1 ,-open and the sets in $\{\phi, Y, \{b\}, \{c\}, \{a, a, b\}\}$ c}, $\{b, c\}$ } are called $\sigma_{1,2}$ -closed. Also the sets in $\{\phi, Y, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}\$ are called $(1,2)^*$ - α g-closed and (1,2)*-g-closed in Y and the sets in $\{\phi, Y, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}\$ are called $(1,2)^*$ - α ĝ-open and (1,2)*-g-open in Y. Let $f:(X, \tau_1, \tau_2)$ \rightarrow (Y, σ_1 , σ_2) be the identity function. Then f is a strongly $(1,2)^*$ - α ĝ-homeomorphism but not $(1,2)^*$ gc-homeomorphism.

4.14. Example

Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}\} \text{ and } \tau_2 = \{\phi, X, \{a\}\} \text{ and } \tau_3 = \{\phi, X, \{a\}\} \text{ and } \tau_4 = \{\phi, X, \{a\}\} \text{ and } \tau_5 = \{\phi, X, \{a\}\} \text{ and }$ $\{b\}\}$. Then the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ are called τ_1 ,-open and the sets in $\{\phi, X, \{c\}, \{a, c\},$ $\{b, c\}\}$ are called $\tau_{1,2}$ -closed. Also the sets in $\{\phi, \phi\}$ $X, \{c\}, \{a, c\}, \{b, c\}\}$ are called $(1,2)^*-\alpha \hat{g}$ -closed and $(1,2)^*$ -g-closed in X, and the sets in $\{\phi, X, \phi\}$ $\{a\}, \{b\}, \{a, b\}\}$ are called $(1,2)^*-\alpha \hat{g}$ -open and $(1,2)^*$ -g-open in X. Let Y = {a, b, c}, $\sigma_1 = \{\phi, Y, \phi_2 = \phi, Y, \phi_3 = \phi, \phi_4 = \phi, \phi_1 = \phi, \phi_2 = \phi, \phi_3 = \phi, \phi_4 = \phi, \phi_1 = \phi, \phi_2 = \phi, \phi_3 = \phi, \phi_4 = \phi, \phi, \phi_4 =$ $\{a\}\}$ and $\sigma_2 = \{\phi, Y, \{a, b\}\}\$. Then the sets in $\{\phi, Y, \{a, b\}\}\$. $\{a\}, \{a, b\}\}$ are called σ_{12} -open and the sets in $\{\phi, \phi\}$ Y, $\{b\}$, $\{c\}$, $\{a, c\}$, $\{b, c\}$ } are called σ_1 ,-closed. Also the sets in $\{\phi, Y, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}\$ are called $(1,2)^*$ - $\alpha \hat{g}$ -closed in Y and the sets in $\{\phi, Y, \phi\}$ $\{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ are called $(1,2)^*-\alpha \hat{g}$ -open in Y. Moreover, the sets in $\{\phi, Y, \{c\}, \{a, c\}, \{b, a, c\}\}$ c} are called (1,2)*-g-closed in Y and the sets in $\{\phi, Y, \{a\}, \{b\}, \{a, b\}\}\$ are called $(1,2)^*$ -g-open in Y. Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be the identity function. Then f is a (1,2)*-gc-homeomorphism but not strongly (1,2)*-gc-homeomorphism.

5. REFERENCES

- Abd El-Monsef, M.E., S. Rose Mary & M. Lellis Thivagar. On αĝ-closed sets in topological spaces. Assuit Univ. J. of Math. and Comp. Sci. 36(1): 43-51(2007).
- 2. Arya, S.P. & T. Nour. Characterizations of s-normal spaces. *Indian Pure Appl. Math.* 21(8): 717-719 (1990).
- 3. Balachandran, K., P. Sundaram & H. Maki. On generalized continuous maps in topological spaces. *Mem. Fac. Sci. Kochi Univ. Ser. A Math.* 12: 5-13 (1991).
- 4. Bhattacharrya, P. & B.K. Lahiri. Semi-generalized closed sets in topology. *Indian J. Math.* 29: 375-382 (1987).
- Devi, R., K. Balachandran & H. Maki. Generalized α-closed maps and α-generalized closed maps. *Indian J. Pure. Appl. Math.* 29(1): 37-49 (1998).
- Devi, R., K. Balachandran & H. Maki. Semigeneralized homeomorphisms and generalized semi-homeomorphisms in topological spaces. *Indian J. Pure Appl. Math.* 26: 271-284 (1995).
- Jafari, S., M. Lellis Thivagar, & Nirmala Mariappan.
 On (1,2)*-αĝ- closed sets. J. Adv. Math. Studies.
 2(2): 25-34 (2009).
- 8. Kelly, J.C. Bitopological spaces. *Proc. London Math. Soc.* 13: 71-89 (1963).
- Lellis Thivagar, M. & O. Ravi. On stronger forms of (1,2)*-quotient mappings in bitopological spaces. *Internat. J. Math. Game theory and Algebra*. 14 (6): 481-492 (2004).
- Lellis Thivagar; M., O. Ravi & M.E. Abd El-Monsef. Remarks on bitopological (1,2)*-quotient mappings. *J. Egypt Math. Soc.* 16(1): 17-25 (2008).
- 11. Lellis Thivagar, M., S. Rose Mary & N. Rajesh. A note on αĝ-continuous functions. (submitted).
- 12. Levine, N. Generalized closed sets in topology. *Rend. Circ. Math. Palermo.* 19(2): 89-96 (1970).
- Maheshwari, S.N. & S.S. Thakur. On α-irresolute mappings. *Tamkang J. Math.* 11: 209-214 (1980).
- 14. Maki, H., R. Devi, & K. Balachandran. Associated topologies of generalized α-closed sets and α-generalized closed sets. *Mem. Fac. Sci. Kochi Univ. Ser. A. Math.* 15: 51-63 (1994).
- Maki, H., Sundaram, P. & K. Balachandran. On generalized homeomorphisms in topological spaces. *Bull. Fukuoka Univ. of Edu.* Part III, 40: 13-21 (1991).
- 16. Njastad, O. On some classes of nearly open sets. *Pacific J. Math.* 15: 961-970 (1965).
- 17. Ravi, O., M. Lellis Thivagar & E. Ekici. On (1,2)*-sets and decompositions of bitopological (1,2)*-continuous mappings. *Kochi J. Math.* 3: 181-189 (2008).

- 18. Ravi, O., M. Lellis Thivagar & E. Hatir. Decomposition of (1,2)*-continuity and (1,2)*-α-continuity. *Miskolc Mathematical Notes.* 10(2): 163-171 (2009).
- 19. Ravi, O., M. Lellis Thivagar & Jin Jinli. Remarks on extensions of (1,2)*-g-closed mappings. *Archimedes J. Math.* (in press).
- Ravi, O., M. Lellis Thivagar, K. Kayathri & M. Joseph Israel, Mildly (1,2)*-normal spaces and some bitopological spaces. *Mathematica Bohemica*. 135(1): 1-13 (2010).
- Ravi, O. & M. Lellis Thivagar. A bitopological (1,2)*-semi- generalized continuous maps. *Bull. Malays. Math. Sci. Soc.* (2) 29(1): 79-88 (2006).
- 22. Ravi, O., S. Pious Missier & T. Salai Parkunan. On bitopological(1,2)*-generalizedHomeomorphisms. *Internat. J. Contemp. Math. Sci.* 5(11): 543-557 (2010).
- Ravi, O., S. Pious Missier. T. Salai Parkunan & A. Pandi. Remarks on bitopological (1,2)*rω-Homeomorphisms. *International Journal of Mathematical Archive* 2(4): 465-475 (2011).
- 24. Ravi, O., S. Pious Missier, A. Pandi, & K. Mahaboob Hassain Sherieff. On (1,2)*- δg-closed sets in bitopological spaces. (submitted).

- 25. Ravi, O. Studies on new class of functions in bitopological spaces. *Ph.D. thesis*, Madurai Kamaraj University (2006).
- O.Ravi, O., A. Pandi, Salai T. Parkunan & S. Pious Missier. On (1,2)*-Homeomorphisms via (1,2)*-δĝ-closed sets. *International Journal of Advances in Pure and Applied Mathematics*. 1(1): 68-88 (2011).
- 27. Rose Mary S. & M. Lellis Thivagar. Stronger forms of αĝ-continuous functions. *Inter. J. of Engg. Comp. Sci. and Math.* 1(1): 71-79 (2010).
- 28. Sheik John, M. A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, *Ph.D. thesis*, Bharathiar University, Coimbatore (2002).
- 29. Stone, M. Application of the theory of Boolean rings to general topology. *Trans. Amer. Math. Soc.* 41: 374-381(1937).
- 30. M. K. R. S. Veera kumar. ĝ-closed sets in topological spaces. *Bull.Allah. Math. Soc.* 18: 99-112 (2003).
- 31. Velicko. N.V. H-closed topological spaces. *Amer. Math. Soc. Transl.* 78: 103-118(1968).
- 32. Zbigniew Duszynski, S. Rose Mary & M. Lellis Thivagar. *Remarks on αĝ-homeomorphisms, Math. Mace.* 7: 13-20(2009).