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1.	 INTRODUCTION

Njastad [16] introduced α-open sets. Maki et al. 
[14] generalized the concepts of closed sets to 
α-generalized closed (briefly αg-closed) sets which 
are strictly weaker than α-closed sets. Veera Kumar 
[30] defined ĝ-closed sets in topological spaces.  El 
Monsef et al. [1] introduced  αĝ-closed sets which 
lie between α-closed sets and αg-closed sets in 
topological spaces. 

	 Maki et al [15] introduced the notion 
of generalized homeomorphisms (briefly 
g-homeomorphism) which are generalizations 
of homeomorphisms in topological spaces. 
Subsequently, Devi et al [6] introduced two class of 
functions called generalized semi-homeomorphisms 
(briefly gs-homeomorphism) and semi-generalized 
homeomorphisms (briefly sg-homeomorphism). 
Quite recently, Zbigniew Duszynski [32] has 
introduced αĝ-homeomorphisms in topological 
spaces.

	 It is well-known that the above mentioned 

topological sets and functions have been 
generalized to bitopological settings due to the 
efforts of many modern topologists [see 7, 9, 10, 
17-26]. In this present paper, we introduce two 
new class of bitopological functions called (1,2)*-
αĝ-homeomorphisms and strongly (1,2)*-αĝ-
homeomorphisms by using (1,2)*-αĝ-closed sets. 
Basic properties of these two functions are studied 
and the relation between these types and other 
existing ones are established.

2. 	 PRELIMINARIES

Throughout this paper, (X, τ1, τ2), (Y, σ1, σ2) and (Z, 
η1, η2) (briefly, X, Y and Z) will denote bitopological 
spaces.

2.1. 	 Definition

Let S be a subset of a bitopological space X. Then 
S is said to be τ1,2-open [9] if  S = A ∪ B, where A 
∈ τ1 and B ∈ τ2.

The complement of τ1,2-open set is called τ1,2-
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closed.

Notice that τ1,2-open sets need not necessarily form 
a topology.

2.2.  Definition [9]

Let S be a subset of a bitopological space X. Then

(1) 	 the τ1,2-closure of S, denoted by τ1,2-cl(S), is 
defined as ∩ {F : S ⊆ F and F is τ1,2-closed}.

(2	 the τ1,2-interior of S, denoted by τ1,2-int(S), is 
defined as   ∪ {F : F ⊆ S and F is  τ1,2-open}.

2.3 .  Definition 

A subset A of a bitopological space X  is called 

(1)	 (1,2)*-semi-open set [10] if A ⊆ τ1,2-cl(τ1,2-
int(A)).

(2) 	 (1,2)*-α-open set [10] if A ⊆ τ1,2-int(τ1,2-
cl(τ1,2-int(A))).

 (3) 	 regular (1,2)*-open set [17] if A = τ1,2-int(τ1,2-
cl(A)).

The complements of the above mentioned open sets 
are called their respective closed sets.

The (1,2)*-semi-closure (resp. (1,2)*-α-closure) 
of a subset A of a bitopological space X, denoted 
by (1,2)*-scl(A) (resp. (1,2)*-αcl(A)), is the 
intersection of all (1,2)*-semi-closed (resp. (1,2)*-
α-closed) sets of X containing A. 

2.4.  Definition 

A subset A of  a bitopological space X  is called

(1) 	 (1,2)*-generalized closed (briefly, (1,2)*-g-
closed) [19] if τ1,2-cl(A) ⊆ U whenever A ⊆ 
U and U is τ1,2-open in X.

(2) 	 (1,2)*-semi-generalized closed (briefly, 
(1,2)*-sg-closed) [21] if (1,2)*-scl(A) ⊆ U 
whenever A ⊆ U and U is (1,2)*-semi-open 
in X.

(3) 	 (1,2)*-generalized semi-closed (briefly, 
(1,2)*-gs-closed) [22] if (1,2)*-scl(A) ⊆ U 
whenever A ⊆ U and U is τ1,2-open in X. 

(4)  	 (1,2)*-ĝ-closed [7] if τ1,2-cl(A) ⊆ U whenever 
A ⊆ U and U is   (1,2)*-semi-open in X.

(5)	 (1,2)*-αg-closed [18] if (1,2)*-αcl(A) ⊆ U 
whenever A ⊆ U and U is  τ1,2-open in X.

	 The complements of the above mentioned 
closed sets are called their respective open 
sets.

(6)	 (1,2)*-αĝ-closed [7] if (1,2)*-αcl(A) ⊆ U 

whenever A ⊆ U and U is  (1,2)*-ĝ-open in 
X.

2.5.  Definition

 A function f : (X, τ1, τ2) → (Y, σ1, σ2) is called (1,2)*-
g-open [22] (resp. (1,2)*-ĝ-open [26], (1,2)*-open 
[20], (1,2)*-sg-open [22], (1,2)*-gs-open [22], 
(1,2)*-α-open [26], (1,2)*-αg-open [23], (1,2)*-
αĝ-open [26]) if the image of every τ1,2-open set in 
X is (1,2)*-g-open (resp. (1,2)*-ĝ-open, σ1,2-open, 
(1,2)*-sg-open, (1,2)*-gs-open, (1,2)*-α-open, 
(1,2)*-αg-open, (1,2)*-αĝ-open)  in Y.

2.6.  Definition 

A function f : (X, τ1, τ2) → (Y, σ1, σ2) is called

(1)	 (1,2)*-g-continuous [21] if f-1(V) is (1,2)*-g-
closed in X,  for every σ1,2-closed set V of Y.

(2)	  (1,2)*-sg-continuous [21] if f-1(V) is (1,2)*-
sg-closed in X, for every σ1,2-closed set V of 
Y.

(3)	  (1,2)*-gs-continuous [21] if f-1(V) is (1,2)*-
gs-closed in  X, for every σ1,2-closed set V of 
Y.

(4)	  (1,2)*-ĝ-continuous [23] if f-1(V) is (1,2)*-ĝ-
closed in X, for every σ1,2-closed set V of Y.

(5)	 (1,2)*-continuous [17] if f-1(V) is τ1,2-closed 
in X, for every σ1,2-closed set V of Y.

2.7.  Definition [22]

A function f : (X, τ1, τ2) → (Y, σ1, σ2) is called

(1)	 (1,2)*-g-homeomorphism if f is bijection, 
(1,2)*-g-open and   (1,2)*-g-continuous.

(2) 	 (1,2)*-sg-homeomorphism if f is bijection, 
(1,2)*-sg-open and  (1,2)*-sg-continuous.

(3)  (1,2)*-gs-homeomorphism if f is bijection, 
(1,2)*-gs-open and (1,2)*-gs-continuous.

 (4) 	 (1,2)*-homeomorphism if f is bijection, 
(1,2)*-open and  (1,2)*-continuous.

2.8.  Definition [26]

A function f : (X, τ1, τ2) → (Y, σ1, σ2) is called
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 (1)  	 (1,2)*-α-continuous  if f-1(V) is (1,2)*-α-open 
in X, for every σ1,2-open set V of Y.

(2)  	 (1,2)*-αĝ-continuous  if f-1(V) is (1,2)*-αĝ-
closed in X, for every σ1,2-closed set V of Y.

(3) 	 (1,2)*-αĝ-irresolute  if f-1(V) is (1,2)*-αĝ-
closed in X, for every (1,2)*-αĝ-closed set V 
of Y.

2.9.  Definition [25]

A function f : (X, τ1, τ2) → (Y, σ1, σ2) is called

 (1) 	  pre-(1,2)*-α-closed (resp. pre (1,2)*-α-open) 
if the image of every (1,2)*-α-closed (resp.    
(1,2)*-α-open) in X is (1,2)*-α-closed ( resp. 
(1,2)*-α-open) in Y.

(2) 	 (1,2)*-α-irresolute if f-1(V) is (1,2)*-α-open 
in X,  for every (1,2)*-α-open set V of Y.

(3) 	 (1,2)*-gc-irresolute if f-1(V) is (1,2)*-g-
closed in X,  for every (1,2)*-g-closed set V 
of Y.

(4) 	 (1,2)*-α-homeomorphism if f is bijection, 
(1,2)*-α-irresolute  and pre-(1,2)*-α-closed.

2.10.  Remark [7]

(1)	   Every  (1,2)*-α-closed set is (1,2)*-αĝ-closed 
but not conversely.

(2)	   Every (1,2)*-αĝ-open set is (1,2)*-gs-open but 
not conversely.

3. 	 (1,2)*-αĝ-Homeomorphisms

3.1.  Definition

(1)	 A bijective function f : (X, τ1, τ2) → (Y, σ1, σ2) 
is called a strongly (1,2)*-αĝ-closed (resp. 
strongly (1,2)*-αĝ-open ) if the image of 
every (1,2)*-αĝ-closed (resp. (1,2)*-αĝ-open) 
set in X is (1,2)*-αĝ-closed (resp. (1,2)*-αĝ-
open) of Y.

(2)	 A bijective function f : (X, τ1, τ2) → (Y, σ1, 
σ2) is called an (1,2)*-αĝ-homeomorphism 
if f is both (1,2)*-αĝ-open and (1,2)*-αĝ-
continuous.

3.2.  Theorem

Every (1,2)*-homeomorphism is (1,2)*-αĝ-
homeomorphism.

Proof 

Let f : (X, τ1, τ2) → (Y, σ1, σ2) be (1,2)*-
homeomorphism.  Then f is bijective, (1,2)*-open 
and (1,2)*-continuous function.  Let U be an τ1,2-
open set in X.  Since f is (1,2)*-open function, f(U) 
is an σ1,2-open set in Y.  Every τ1,2-open set is (1,2)*-
αĝ-open and hence f(U) is (1,2)*-αĝ-open in Y.  This 
implies f is (1,2)*-αĝ-open.  Let V be a σ1,2-closed 
set in Y. Since f is (1,2)*-continuous, f-1(V) is τ1,2-
closed in X.  Thus f-1(V) is (1,2)*-αĝ-closed in X 
and therefore, f is (1,2)*-αĝ-continuous.  Hence, f 
is an (1,2)*-αĝ-homeomorphism.

3.3.  Remark

The converse of Theorem 3.2 need not be true as 
shown in the following example.

3.4.  Example

Let X = {a, b, c}, τ1 = {φ, X} and τ2 = {φ, X, {a, b}}.  
Then the sets in   {φ, X, {a, b}} are called τ1,2-open 
and the sets in {φ, X, {c}} are called τ1,2-closed.  
Also the sets in {φ, X, {c}, {a, c}, {b, c}} are called 
(1,2)*-αĝ-closed in X and the sets in {φ, X, {a}, {b}, 
{a, b}} are called (1,2)*-αĝ-open in X.  Let Y = {a, 
b, c}, σ1 = {φ, Y, {a}} and σ2 = {φ, Y, {b}}. Then the 
sets in {φ, Y, {a}, {b}, {a, b}} are called σ1,2-open 
and the sets in {φ, Y, {c}, {a, c}, {b, c}} are called   
σ1,2-closed.  Also the sets in {φ, Y, {c}, {a, c}, {b, 
c}} are called (1,2)*-αĝ-closed in Y and the sets in 
{φ, Y, {a}, {b}, {a, b}} are called (1,2)*-αĝ-open 
in Y. Let f : (X, τ1, τ2) → (Y, σ1, σ2) be the identity 
function.  Then f is a (1,2)*-αĝ-homeomorphism 
but f is not a (1,2)*-homeomorphism. 

3.5.  Proposition

For any bijective function f : (X, τ1, τ2) → (Y, σ1, σ2) 
the following statements are equivalent.

(1)	 f-1 : (Y, σ1, σ2) → (X, τ1, τ2) is (1,2)*-αĝ-
continuous function.

 (2) 	 f is a (1,2)*-αĝ-open function.

(3) 	 f is a (1,2)*-αĝ-closed function.

Proof   

(1) 	 ⇒ (2): Let U be an τ1,2-open set in X. Then X 
− U is τ1,2-closed in X. Since  f-1 is (1,2)*-αĝ-
continuous, (f-1)-1(X − U) is (1,2)*-αĝ-closed 
in Y. That is f(X − U) =  Y −  f(U)  is (1,2)*-
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αĝ-closed in Y. This implies f(U) is (1,2)*-
αĝ-open in Y.  Hence f is (1,2)*-αĝ-open 
function.

(2) 	 ⇒ (3): Let F be a τ1,2-closed set in X. Then X − 
F is τ1,2-open in X. Since f is (1,2)*-αĝ-open, 
f(X−F) is (1,2)*-αĝ-open set in Y. That is Y 
− f(F) is (1,2)*- αĝ-open in Y. This implies 
that f(F) is (1,2)*-αĝ-closed in Y. Hence f is 
(1,2)*- αĝ-closed.

(3) 	 ⇒ (1): Let V be a τ1,2-closed set in X. Since 
f is (1,2)*-αĝ-closed function, f(V) is (1,2)*-
αĝ-closed in Y. That is (f-1)-1(V) is (1,2)*-
αĝ-closed in Y. Hence  f-1 is (1,2)*-αĝ-
continuous.

3.6.  Proposition

Let f: (X, τ1, τ2) → (Y, σ1, σ2) be a bijective and 
(1,2)*-αĝ-continuous function. Then the following 
statements are equivalent:

(1)	  f is a (1,2)*-αĝ-open function.

(2)	  f is a (1,2)*-αĝ-homeomorphism.

(3)	  f is a (1,2)*-αĝ-closed function.

Proof   

(1) 	 ⇒ (2): Let f be a (1,2)*-αĝ-open function. 
By hypothesis, f is bijective and (1,2)*-
αĝ-continuous. Hence f is a (1,2)*-αĝ-
homeomorphism.

(2) 	 ⇒ (3): Let f be a (1,2)*-αĝ-homeomorphism. 
Then f is (1,2)*-αĝ-open. By Proposition 3.5, 
f is (1,2)*-αĝ-closed function. 

(3) 	 ⇒ (1): It is obtained from Proposition 3.5.

3.7.  Theorem 

Every (1,2)*-α-homeomorphism is (1,2)*-αĝ-
homeomorphism.

Proof 

Let f : (X, τ1, τ2) → (Y, σ1, σ2) be a (1,2)*-α-
homeomorphism.  Then f is bijective, (1,2)*-α-
irresolute and pre-(1,2)*-α-closed.  Let F be τ1,2-
closed in X.  Then F is (1,2)*-α-closed in X.  Since 
f is pre-(1,2)*-α-closed, f(F) is (1,2)*-α-closed in Y.  
Every (1,2)*-α-closed set is (1,2)*-αĝ-closed and 
hence f(F) is (1,2)*-αĝ-closed in Y.  This implies f 
is (1,2)*-αĝ-closed function.  Let V be a σ1,2-closed 

set of Y.  Thus V is (1,2)*-α-closed in Y.  Since f 
is    (1,2)*-α-irresolute f-1(V) is (1,2)*-α-closed in 
X.  Thus f-1(V) is  (1,2)*-αĝ-closed in X.  Therefore 
f is (1,2)*-αĝ-continuous.  Hence f is a (1,2)*-αĝ-
homeomorphism.

3.8.  Remark

The following Example shows that the converse of 
Theorem 3.7 need not be true.

3.9.  Example

Let X = {a, b, c}, τ1 = {φ, X} and τ2 = {φ, X, {a}}.  
Then the sets in {φ, X, {a}} are called τ1,2-open and 
the sets in {φ, X, {b, c}} are called τ1,2-closed.  Also 
the sets in {φ, X, {b}, {c}, {a, b}, {a, c}, {b, c}} 
are called (1,2)*-αĝ-closed in X and the sets in {φ, 
X, {a}, {b}, {c}, {a, b}, {a, c}} are called (1,2)*-
αĝ-open in X. Moreover, the sets in {φ, X, {a}, {a, 
b}, {a, c}} are called (1,2)*-α-closed in X and the 
sets in {φ, X, {b}, {c}, {b, c}} are called (1,2)*-
α-open in X.   Let Y = {a, b, c}, σ1 = {φ, Y} and 
σ2 = {φ, Y, {a, b}}. Then the sets in {φ, Y, {a, b}} 
are called σ1,2-open and the sets in {φ, Y, {c}} are 
called σ1,2-closed.  Also the sets in {φ, Y, {c}, {a, 
c}, {b, c}} are called (1,2)*-αĝ-closed in Y and the 
sets in {φ, Y, {a}, {b}, {a, b}} are called (1,2)*-
αĝ-open in Y. Moreover, the sets in {φ, Y, {a, b}} 
are called (1,2)*-α-closed in Y and the sets in {φ, 
Y, {c}} are called (1,2)*-α-open in Y. Let f : (X, τ1, 
τ2) → (Y, σ1, σ2) be the identity function. Then f is a 
(1,2)*-αĝ-homeomorphism but f is not a (1,2)*-α-
homeomorphism. 

3.10.  Remark

Next Example shows that the composition of two 
(1,2)*-αĝ-homeomorphisms is not always a (1,2)*-
αĝ-homeomorphism.

3.11.  Example

Let X = {a, b, c}, τ1 = {φ, X, {a}} and τ2 = {φ, X, {a, 
c}}.  Then the sets in {φ, X, {a}, {a, c}} are called 
τ1,2-open and the sets in {φ, X, {b}, {b, c}} are 
called τ1,2-closed.  Also the sets in {φ, X, {b}, {c}, 
{a, b}, {b, c}} are called (1,2)*-αĝ-closed in X and 
the sets in {φ, X, {a}, {c}, {a, b}, {a, c}} are called 
(1,2)*-αĝ-open in X.  Let Y= {a, b, c}, σ1 = {φ, Y} 
and σ2 = {φ, Y, {a}}.  Then the sets in {φ, Y, {a}} 
are called σ1,2-open and the sets in {φ, Y, {b, c}} are 
called σ1,2-closed.  Also the sets in {φ, Y, {b}, {c}, 
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{a, b}, {a, c}, {b, c}} are called (1,2)*-αĝ-closed 
in Y and the sets in {φ, Y, {a}, {b}, {c}, {a, b}, {a, 
c}} are called (1,2)*-αĝ-open in Y.  Let Z = {a, b, 
c}, η1 = {φ, Z} and η2 = {φ, Z,  {a, b}}.  Then the 
sets in {φ, Z, {a, b}} are called η1,2-open and the 
sets in {φ, Z, {c}} are called η1,2-closed.  Also the 
sets in {φ, Z, {c}, {a, c}, {b, c}} are called (1,2)*-
αĝ-closed in Z and the sets in {φ, Z, {a}, {b}, {a, 
b}} are called (1,2)*-αĝ-open in Z.  Let f : (X, τ1, τ2) 
→ (Y, σ1, σ2) and g : (Y, σ1, σ2) → (Z, η1, η2) be two 
identity functions. Then both f and g are (1,2)*-αĝ-
homeomorphisms. The set {a, c} is τ1,2-open in X, 
but (g o f )({a, c}) = {a, c} is not (1,2)*-αĝ-open in 
Z. This implies that g o f is not (1,2)*-αĝ-open and 
hence g o f is not (1,2)*-αĝ-homeomorphism. 

3.12.  Theorem

Every (1,2)*-αĝ-homeomorphism is (1,2)*-gs-
homeomorphism but not conversely.

Proof 

Let f : (X, τ1, τ2) → (Y, σ1, σ2) be a (1,2)*-αĝ-
homeomorphism. Then f is a bijective, (1,2)*-αĝ-
open and (1,2)*-αĝ-continuous function. Let U be 
an τ1,2-open set in X. Then f(U) is (1,2)*-αĝ-open in 
Y.  Every (1,2)*-αĝ-open set is (1,2)*-gs-open and 
hence, f(U) is (1,2)*-gs-open in Y.  This implies f is 
(1,2)*-gs-open function.  Let V be σ1,2-closed set in 
Y. Then f-1(V) is (1,2)*-αĝ-closed in X. Hence f-1(V) 
is (1,2)*-gs-closed in X.  This implies f is (1,2)*-gs-
continuous.  Hence f is (1,2)*-gs-homeomorphism.

3.13.  Remark

The following Example shows that the converse of 
Theorem 3.12 need not be true.

3.14.  Example

Let X = {a, b, c}, τ1 = {φ, X, {a}} and τ2 = {φ, X, 
{b}}.  Then the sets in {φ, X, {a}, {b}, {a, b}} are 
called τ1,2-open and the sets in {φ, X, {c}, {a, c},  
{b, c}} are called τ1,2-closed.  Also the sets in {φ, X, 
{c}, {a, c}, {b, c}} are called (1,2)*-αĝ-closed in 
X and the sets in {φ, X, {a}, {b}, {a, b}} are called 
(1,2)*-αĝ-open in X. Moreover, the sets in {φ, X, 
{a}, {b}, {c}, {a, c}, {b, c}} are called (1,2)*-
gs-closed in X and the sets in {φ, X, {a}, {b}, {a, 
b}, {a, c}, {b, c}} are called (1,2)*-gs-open in X.   
Let Y = {a, b, c}, σ1 = {φ, Y, {a}} and σ2 = {φ, Y, 
{b, c}}. Moreover, the sets in {φ, Y, {a}, {b, c}} 

are called σ1,2-open and σ1,2-closed.  Also the sets 
in {φ, Y, {a}, {b, c}} are called (1,2)*-αĝ-closed  
and (1,2)*-αĝ-open in Y. Moreover, the sets in {φ, 
Y, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}} are called 
(1,2)*-g-closed and (1,2)*-g-open in Y.  Let f : (X, 
τ1, τ2) → (Y, σ1, σ2) be the identity function.  Then f 
is a (1,2)*-gs-homeomorphism but f is not a (1,2)*- 
αĝ-homeomorphism. 

3.15.  Remark

The following Examples show that the concepts 
of (1,2)*-αĝ-homeomorphisms and (1,2)*-g-
homeomorphisms are independent of each other.

3.16.  Example

Let X = {a, b, c}, τ1 = {φ, X, {a}, {a, b}} and τ2 = 
{φ, X, {a, c}}.  Then the sets in {φ, X, {a}, {a, b}, 
{a, c}} are called τ1,2-open and the sets in {φ, X, 
{b}, {c}, {b, c}} are called τ1,2-closed.  Also the 
sets in {φ, X, {b}, {c}, {b, c}} are called (1,2)*-
αĝ-closed  and (1,2)*-g-closed in X. Moreover, the 
sets in {φ, X, {a}, {a, b}, {a, c}} are called (1,2)*-
αĝ-open and (1,2)*-ĝ-open in X.  Let Y = {a, b, 
c}, σ1 = {φ, Y, {b}} and σ2 = {φ, Y, {a, b}}. Then 
the sets in {φ, Y, {b}, {a, b}} are called σ1,2-open 
and the sets in {φ, Y, {c}, {a, c}} are called σ1,2-
closed.  Also the sets in {φ, Y, {a}, {c}, {a, c}, {b, 
c}} are called (1,2)*-αĝ-closed in Y and the sets in 
{φ, Y, {a}, {b}, {a, b}, {b, c}} are called (1,2)*-
αĝ-open in Y. Moreover, the sets in {φ, Y, {c}, {a, 
c}, {b, c}} are called (1,2)*-g-closed in Y and the 
sets in {φ, Y, {a}, {b}, {a, b}} are called (1,2)*-g-
open in Y.  Define a function f : (X, τ1, τ2) → (Y, σ1, 
σ2) by f(a) = b, f(b) = a and f(c) = c.  Then f is a 
(1,2)*-αĝ-homeomorphism but f is not a (1,2)*-g-
homeomorphism. 

3.17.  Example

Let X = {a, b, c}, τ1 = {φ, X, {a}} and τ2 = {φ, X}.  
Then the sets in {φ, X, {a}} are called τ1,2-open and 
the sets in {φ, X, {b, c}} are called τ1,2-closed.  Also 
the sets in {φ, X, {b}, {c}, {a, b}, {a, c}, {b, c}} 
are called (1,2)*-αĝ-closed and (1,2)*-g-closed in 
X.  Moreover, the sets in {φ, X, {a}, {b}, {c},    {a, 
b}, {a, c}} are called (1,2)*-αĝ-open and (1,2)*-g-
open in X.  Let Y = {a, b, c}, σ1 = {φ, Y, {a}} and σ2 
= {φ, Y, {b, c}}. Then the sets in {φ, Y, {a}, {b, c}} 
are called σ1,2-open and σ1,2-closed.  Also the sets 
in {φ, Y, {a}, {b, c}} are called (1,2)*-αĝ-closed 
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and (1,2)*-αĝ-open in Y. Moreover, the sets in {φ, 
Y, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}} are called 
(1,2)*-gs-closed and (1,2)*-gs-open in Y.  Define a 
function f : (X, τ1, τ2) → (Y, σ1, σ2) by f(a) = b, f(b) = 
c, f(c) = a. Then f is a (1,2)*-g-homeomorphism but 
f is not a (1,2)*- αĝ-homeomorphism. 

3.18.  Remark

(1,2)*-αĝ-homeomorphisms and (1,2)*-sg-
homeomorphisms are independent of each other as 
shown below.  

3.19.  Example

The function f defined in Example 3.16 is 
(1,2)*- αĝ-homeomorphism but not (1,2)*-sg-
homeomorphism.

3.20.  Example

Let X = {a, b, c}, τ1 = {φ, X, {a}} and τ2 = {φ, X, 
{b}}.  Then the sets in {φ, X, {a}, {b}, {a, b}} are 
called τ1,2-open and (1,2)*-αĝ-open in X;  the sets in 
{φ, X, {c}, {a, c},  {b, c}} are called τ1,2-closed and 
(1,2)*-αĝ-closed in X. Also, the sets in {φ, X, {a}, 
{b}, {c}, {a, c}, {b, c}} are called (1,2)*-sg-closed 
in X and the sets in {φ, X, {a}, {b}, {a, b}, {a, c}, 
{b, c}} are called (1,2)*-sg-open in X.   Let Y = {a, 
b, c}, σ1 = {φ, Y, {a}} and σ2 = {φ, Y, {b, c}}. Then 
the sets in {φ, Y, {a}, {b, c}} are called σ1,2-open 
and σ1,2-closed.  Also the sets in {φ, Y, {a}, {b, c}} 
are called (1,2)*-αĝ-closed and (1,2)*-αĝ-open in 
Y. Moreover, the sets in {φ, Y, {a}, {b}, {c}, {a, 
b}, {a, c}, {b, c}} are called (1,2)*-sg-closed and 
(1,2)*-sg-open in Y. Define a function f : (X, τ1, τ2) 
→   (Y, σ1, σ2) by f(a) = b, f(b) = a and f(c) = c.  
Then f is (1,2)*-sg-homeomorphism but not (1,2)*-
αĝ-homeomorphism.

4.	 Strongly (1,2)*-αĝ-
Homeomorphisms

4.1. Definition

A bijection f : (X, τ1, τ2) → (Y, σ1, σ2) is said to be 
strongly (1,2)*-αĝ-homeomorphism if f is (1,2)*-
αĝ-irresolute and its inverse f-1 is also (1,2)*-αĝ-
irresolute.

4.2. Theorem

Every strongly (1,2)*-αĝ-homeomorphism is 

(1,2)*-αĝ-homeomorphism.

Proof 

Let f : (X, τ1, τ2) → (Y, σ1, σ2) be strongly (1,2)*-
αĝ-homeomorphism. Let U be τ1,2-open in X.  Then 
U is (1,2)*-αĝ-open in X.  Since f-1 is (1,2)*-αĝ-
irresolute, (f-1)-1(U) is (1,2)*-αĝ-open in Y.  That 
is f(U) is (1,2)*-αĝ-open in Y.  This implies f is 
(1,2)*-αĝ-open function.  Let F be a σ1,2-closed in Y.  
Then F is (1,2)*-αĝ-closed in Y.  Since f is (1,2)*-
αĝ-irresolute, f-1(F) is (1,2)*-αĝ-closed in X.  This 
implies f is (1,2)*-αĝ-continuous function.  Hence f 
is (1,2)*-αĝ-homeomorphism.

4.3. Remark 

The following Example shows that the converse of 
Theorem 4.2 need not be true.

4.4.  Example

Let X = {a, b, c}, τ1 = {φ, X, {a}} and τ2 = {φ, X, 
{a, c}}.  Then the sets in {φ, X, {a}, {a, c}} are 
called τ1,2-open and the sets in {φ, X, {b}, {b, c}} 
are called τ1,2-closed.  Also the sets in {φ, X, {b}, 
{c}, {a, b}, {b, c}} are called (1,2)*-αĝ-closed in X 
and the sets in {φ, X, {a}, {c}, {a, b}, {a, c}} are 
called (1,2)*-αĝ-open in X.  Let Y = {a, b, c}, σ1 = 
{φ, Y, {a}} and σ2 = {φ, Y}. Then the sets in {φ, Y, 
{a}} are called σ1,2-open and the sets in {φ, Y, {b, 
c}} are called σ1,2-closed.  Also the sets in {φ, Y, 
{b}, {c}, {a, b}, {a, c}, {b, c}} are called (1,2)*-
αĝ-closed in Y and the sets in {φ, Y, {a}, {b}, {c}, 
{a, b}, {a, c}} are called (1,2)*-αĝ-open in Y.  Let 
f : (X, τ1, τ2) → (Y, σ1, σ2) be the identity function.  
Then f is a (1,2)*-αĝ-homeomorphism but f is not a 
strongly (1,2)*-αĝ-homeomorphism. 

4.5.  Theorem

The composition of two strongly (1,2)*-αĝ-
homeomorphisms is a strongly (1,2)*-αĝ-
homeomorphism.

Proof 

Let f : (X, τ1, τ2) → (Y, σ1, σ2) and g : (Y, σ1, σ2) → (Z, 
η1,  η2) be two strongly (1,2)*-αĝ-homeomorphisms. 
Let F be a (1,2)*-αĝ-closed set in Z. Since g is 
(1,2)*-αĝ-irresolute, g-1(F) is (1,2)*-αĝ-closed in Y. 
Since f is a (1,2)*-αĝ-irresolute, f-1(g-1(F)) is (1,2)*-
αĝ-closed in X. That is (g o f)-1(F) is (1,2)*-αĝ-
closed in X. This implies that g o f : (X, τ1, τ2) → (Z, 
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η1,  η2) is (1,2)*-αĝ-irresolute.  Let V be a (1,2)*-αĝ-
closed in X. Since f-1 is a (1,2)*-αĝ-irresolute,  (f-1)-

1(V) is (1,2)*-αĝ-closed in Y. That is f(V) is (1,2)*-
αĝ-closed in Y. Since   g-1 is a (1,2)*-αĝ-irresolute, 
(g-1)-1(f(V)) is (1,2)*-αĝ-closed in Z. That is g(f(V)) 
is (1,2)*-αĝ-closed in Z.  So, (g o f)(V) is (1,2)*-
αĝ-closed in Z. This implies that  ((g o f)-1)-1(V) is  
(1,2)*-αĝ-closed in Z. This shows that (g o f)-1 :(Z, 
η1,  η2) → (X, τ1, τ2) is  (1,2)*-αĝ-irresolute. Hence g 
o f is a strongly (1,2)*-αĝ-homeomorphism.

We denote the family of all strongly (1,2)*-αĝ-
homeomorphisms from a bitopological space (X, 
τ1, τ2) onto itself by (1,2)*-sαĝ-h(X).

4.6. Theorem

The set (1,2)*-sαĝ-h(X) is a group under composition 
of functions.

Proof 

By Theorem 4.5, g o f ∈ (1,2)*-sαĝ-h(X) for all f, g 
∈ (1,2)*-sαĝ-h(X). We know that the composition 
of functions is associative. The identity function 
belonging to (1,2)*-sαĝ-h(X) serves as the identity 
element. If f ∈ (1,2)*-sαĝ-h(X), then f-1 ∈ (1,2)*-
sαĝ-h(X) such that f o f-1 = f-1 o f = I and so inverse 
exists for each element of (1,2)*-sαĝ-h(X). Hence 
(1,2)*-sαĝ-h(X) is a group under the composition 
of functions.

4.7. Theorem

Let f : (X, τ1, τ2) → (Y, σ1, σ2) be a strongly (1,2)*-
αĝ-homeomorphism. Then f induces an (1,2)*-
isomorphism from the group (1,2)*-sαĝ-h(X) onto 
the group (1,2)*-sαĝ-h(Y).

Proof   

Using the function f, we define a function θf : 
(1,2)*-sαĝ-h(X) → (1,2)*-sαĝ-h(Y) by θf(k) = f o 
k o f-1 for every k ∈ (1,2)*-sαĝ-h(X). Then θf is a 
bijection.  Further, for all k1, k2 ∈ (1,2)*-sαĝ-h(X), 
θf(k1 o k2) = f o (k1 o k2) o f-1 = (f o k1 o f-1) o (f o k2 
o f-1) = θf (k1) o θf (k2). Therefore θf is an (1,2)*-
isomorphism induced by f. 

4.8. Remark

The concepts of strongly (1,2)*-αĝ-homeomorphisms 
and (1,2)*-α-homeomorphisms are independent 
notions as shown in the following examples.

4.9.  Example

Let X = {a, b, c}, τ1 = {φ, X} and τ2 = {φ, X, {a, b}}.  
Then the sets in {φ, X, {a, b}} are called τ1,2-open 
and (1,2)*-α-open; and the sets in {φ, X, {c}} are 
called τ1,2-closed and (1,2)*-α-closed.  Also the sets 
in {φ, X, {c}, {a, c}, {b, c}} are called (1,2)*-αĝ-
closed in X and the sets in {φ, X, {a}, {b}, {a, b}, 
{a, b}} are called (1,2)*-αĝ-open in X.  Let Y = {a, 
b, c}, σ1 = {φ, Y, {a}} and σ2 = {φ, Y, {b}}. Then the 
sets in {φ, Y, {a}, {b}, {a, b}} are called σ1,2-open 
and (1,2)*-α-open; and the sets in {φ, Y, {c}, {a, c}, 
{b, c}} are called σ1,2-closed and (1,2)*-α-closed in 
Y.  Also the sets in {φ, Y, {c}, {a, c}, {b, c}} are 
called (1,2)*-αĝ-closed in Y and the sets in {φ, Y, 
{a}, {b}, {a, b}} are called (1,2)*-αĝ-open in Y.  Let 
f : (X, τ1, τ2) → (Y, σ1, σ2) be the identity function.  
Then f is a strongly (1,2)*-αĝ-homeomorphism but 
f is not  (1,2)*-α-homeomorphism. 

4.10.  Example

Let X = {a, b, c}, τ1 = {φ, X, {a}} and τ2 = {φ, X, {a, 
b}}.  Then the sets in {φ, X, {a}, {a, b}} are called 
τ1,2-open and the sets in {φ, X, {c}, {b, c}} are 
called τ1,2-closed.  Also the sets in {φ, X, {b}, {c}, 
{a, c}, {b, c}} are called (1,2)*-αĝ-closed in X and 
the sets in {φ, X, {a}, {b}, {a, b}, {a, c}} are called 
(1,2)*-αĝ-open in X.  Moreover, the sets in {φ, X, 
{b}, {c}, {b, c}} are called (1,2)*-α-closed in X 
and the sets in {φ, X, {a}, {a, b}, {a, c}} are called 
(1,2)*-α-open in X.  Let Y = {a, b, c}, σ1 = {φ, Y} 
and σ2 = {φ, Y, {a}}. Then the sets in {φ, Y, {a}} 
are called σ1,2-open and the sets in {φ, Y, {b, c}} are 
called σ1,2-closed.  Also the sets in {φ, Y, {b}, {c}, 
{a, b}, {a, c}, {b, c}} are called (1,2)*-αĝ-closed 
in Y and the sets in {φ, Y, {a}, {b}, {c}, {a, b}, {a, 
c}} are called (1,2)*-αĝ-open in Y.  Moreover, the 
sets in {φ, Y, {b}, {c}, {b, c}} are called (1,2)*-α-
closed in Y and the sets in {φ, Y, {a}, {a, b}, {a, 
c}} are called (1,2)*-α-open in Y.  Let f : (X, τ1, τ2) 
→ (Y, σ1, σ2) be the identity function.  Then f is a 
(1,2)*-α-homeomorphism but not strongly (1,2)*-
αĝ-homeomorphism.

4.11.  Definition

A bijective function f : (X, τ1, τ2) → (Y, σ1, σ2) is 
called (1,2)*-gc-homeomorphism if f is (1,2)*-gc-
irresolute and  f-1 is (1,2)*-gc-irresolute. 
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4.12.  Remark

The concepts of strongly (1,2)*-αĝ-homeomorphisms 
and (1,2)*-gc-homeomorphisms are independent of 
each other as the following examples show.

4.13.  Example

Let X = {a, b, c}, τ1 = {φ, X, {a}} and τ2 = {φ, X, 
{a, b}}.  Then the sets in {φ, X, {a}, {a, b}} are 
called τ1,2-open and the sets in {φ, X, {c}, {b, c}} 
are called τ1,2-closed.  Also the sets in {φ, X, {b}, 
{c}, {a, c}, {b, c}} are called (1,2)*-αĝ-closed in 
X and the sets in {φ, X, {a}, {b}, {a, b}, {a, c}} 
are called (1,2)*-αĝ-open in X.  Moreover, the sets 
in {φ, X, {c}, {a, c}, {b, c}} are called (1,2)*-g-
closed in X and the sets in {φ, X, {a}, {b}, {a, b}} 
are called (1,2)*-g-open in X.  Let Y = {a, b, c}, σ1 
= {φ, Y, {b}, {a, b}} and σ2 = {φ, Y, {a}, {a, c}}. 
Then the sets in {φ, Y, {a}, {b}, {a, b}, {a, c}} are 
called σ1,2-open and the sets in {φ, Y, {b}, {c}, {a, 
c}, {b, c}} are called σ1,2-closed.  Also the sets in 
{φ, Y, {b}, {c}, {a, c}, {b, c}} are called (1,2)*-
αĝ-closed and (1,2)*-g-closed in Y and the sets in 
{φ, Y, {a}, {b}, {a, b}, {a, c}} are called (1,2)*-
αĝ-open and (1,2)*-g-open in Y.  Let f : (X, τ1, τ2) 
→ (Y, σ1, σ2) be the identity function.  Then f is a 
strongly (1,2)*-αĝ-homeomorphism but not (1,2)*-
gc-homeomorphism.

4.14. Example

Let X = {a, b, c}, τ1 = {φ, X, {a}} and τ2 = {φ, X, 
{b}}.  Then the sets in {φ, X, {a}, {b}, {a, b}} are 
called τ1,2-open and the sets in {φ, X, {c}, {a, c},  
{b, c}} are called τ1,2-closed.  Also the sets in {φ, 
X, {c}, {a, c}, {b, c}} are called (1,2)*-αĝ-closed 
and (1,2)*-g-closed in X,  and the sets in {φ, X, 
{a}, {b}, {a, b}} are called (1,2)*-αĝ-open and 
(1,2)*-g-open in X.  Let Y = {a, b, c}, σ1 = {φ, Y, 
{a}} and σ2 = {φ, Y, {a, b}}. Then the sets in {φ, Y, 
{a}, {a, b}} are called σ1,2-open and the sets in {φ, 
Y, {b}, {c}, {a, c}, {b, c}} are called σ1,2-closed.  
Also the sets in {φ, Y, {b}, {c}, {a, c}, {b, c}} are 
called (1,2)*-αĝ-closed in Y and the sets in {φ, Y, 
{a}, {b}, {a, b}, {a, c}} are called (1,2)*-αĝ-open 
in Y.  Moreover, the sets in {φ, Y, {c}, {a, c}, {b, 
c}} are called (1,2)*-g-closed in Y and the sets in 
{φ, Y, {a}, {b}, {a, b}} are called (1,2)*-g-open in 
Y.  Let f : (X, τ1, τ2) → (Y, σ1, σ2) be the identity 
function.  Then f is a (1,2)*-gc-homeomorphism 
but not strongly (1,2)*-gc-homeomorphism.
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