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Abstract: In the present paper we have studied the Sitnikov problem when extended to four body problem
with all the primaries as oblate bodies. Here all the three primaries are moving in the circular orbit in the x-
y plane and fourth particle is moving along the z-axis. First we found the condition to maintain the
equilateral configuration of the system, then we determined the equation of motion of the system. Using the
Floquet theory, we found the Stability region of the motion depending on oblateness parameter.
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1. INTRODUCTION

In the present paper we have studied the Sitnikov
restricted four body problem when all the
primaries are moving in circular orbits around
their centre of mass with the assumption that all
the primaries are oblate bodies. The Sitnikov
problem is a special case of the restricted three
body problem where the two primaries of equal
masses (m; = m, = m =1/2) are moving in circular
or elliptic orbits around the centre of mass under
Newtonian force of attraction and the third body of
mass mj (the mass of the third body is much less
than the masses of the primaries ) moves along the
line which is passing through the centre of mass
of the primaries and is perpendicular to the plane
of motion of the primaries. It was Pavanini [1],
who originally introduced this problem by taking
the circular case. MacMillan [2] found the exact
solution which can be expressed in terms of Jacobi
elliptic function. Sitnikov [3] has studied the
existence of oscillating motion of the three body
problem. Sitnikov problem is studied by many
scientists, i.e., Perdios et al [4], Liu and Sun [5],
Hagel [6], Belbruno et al [7], Faruque [8], Soulis
et al [9, 10], Perdois [11], Boutis and Papadakis
[12].

In this paper we have studied the Sitnikov
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problem when extended to four body problem by
taking all the primaries as oblate bodies. We have
found out the equation of motion when all the
primaries are oblate bodies and are moving in
circular orbits around their centre of mass. Then
we have investigated the stability of motion of my
and discussed the results so obtained.

2. EQUATION OF MOTION

The system consists of three primaries with equal

masses (m, = m, = m, = %) and all the

primaries are oblate bodies. The fourth body have
a mass (m,) which is much less than the masses of

the primaries. We have shown that all of the
primaries are at the vertices of an equilateral
triangle under certain conditions. The fourth body
is confined to a motion perpendicular to the plane
of motion of the three primaries, which are equally
far away from the barycentre of the system. All the
primaries are moving in circular orbits around
their center of mass “O” which is taken as origin.
The fourth body is moving along the line
perpendicular to the plane of motion of the
primaries and passing through the centre of mass.
In such a system the motion of the fourth body is
one dimensional.
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When all the primaries are oblate bodies then
the equilateral triangle configuration does not
remain the same. To make the equilateral
configuration, we impose the conditions which
are:

1. Principal axes of all the oblate bodies are
parallel to the synodic axes.

2. The masses of all the bodies are equal.

Fig.1 Sitnikov Four body configuration: Circular
case.

Let the axes be @, b;, ¢;, then as the bodies are
oblate @, = b, where i = 1, 2, 3.
the moment of inertia of the oblate spheroid

m;, m, and m, about the principal axes of the
body are:

Hence
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relative to the principal axes of m, , then

) 3’ ro,

a, = —— b2 = —.,C
2 20 Y2 T 2 % ¥2
ar ar

Thus the potential between the two bodies m, m,,

y = Gmm,, Gm
r r

1 3
20448+ C) =2 (4 + B + Ce)|

3
r

+szE(A2+B2+C2)

-2 (4a + 58+ )

Clemency & Brouwer [13]
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Where,
a - ¢
A = 1
{ - ()

Equation of motion of #1; is
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The equation of motion of 771, is
1, 6AJ
- |
30, P

, 1 64 1
I B el e
3p12 1012 3p23

64 ﬂ
+ 5 U,
P>

1 64
- — +—|ru; = 0.
31023 p23

The equation of motion of 72, is

3L, pn) 0 Ben el

2 1 64 1 64
+|-n" + —+— |+ — + — || = 0.
3p13 p13 3p23 p23

Where P, is the vectors from m; to m;.

When the body is oblate the
configuration does not remain the same.

equilateral

Let us suppose p, =1 + A, p, =1+ 4
and p,, = [ + A, where 4, A, and A, are

very-very small and / is the length of the sides of
equilateral triangle.

Thus the equation of motion of m, becomes

-’ + iz(l—%jatg(l—%j
3 [ ) [

-2 -

1 3 64 5
LGP ARG |

1 3 64 5
(30Tl
the equation of motion of m, becomes

[ (- E -
[l 262

0-2)-50- )
-2 -2

and the equation of motion of m, becomes

{36-2)- -]
{36-2)- 2]
b2
-2 -3 o

We have neglected the higher order terms in 4,
and LA, (i = 1,2, 3).

Since the centre of mass has been taking as the
origin, we have

mru, + myru, + myru, = 0.
Applying the same process as used by McCuskey
[14], we have the non-trivial solution when the
determinant is zero. Thus, we get

1
9l°
—2l'A4, - 2'A, = 2I'2) = 0.

(P - n’) (364 + I - I°n?

And hence, n° = I°.

If we put the value of the #° in the second factor,
we get

184 + I'A4, + I'2, + I'2, = 0.

Suppose that the configuration remains the same,
then, we must have

ho=d =2 =

64

= 121—7
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Taking the unit of length such that / = 1 (This
corresponds to the length of the side of the
equilateral triangle in the classical case. McCaskey
[14]), we get

A =64. )
Taking the unit of mass such that
1

m o= m, = m, = 5,
The unit of time such thatG = 1.
Then the Equation of motion of m, is
d’z _ z 94z 1547
dt’ r P o
where
1 + 64y
r o= \/22 + (—)
3
Neglecting A°, we get
1+ 124
3
Hence
d*z _ z
2 - 3
dt o, 0+ 6A)y |?
3 (3)
94z 154z2°
o 7
{Zz L0+ 6A)2}2 {22 L0+ 6A)2T
3 3

Writing the general Equation of motion in synodic
axes

.x'— 2n)'/ = Q,

y+omx = Q, @)
= Q.

Where

Q=%(x2+y2)+mﬁi+i+£]

rl r2 r3

1 1 1 1 1 1
+A4 -3 + -3 + 5 |~ 31422 - + - + -5 .
n 7 £ h r I

n= \/(x - xi)2 + (y - yi)2 + ZZ’ (i = 1’ 2’3)

1+ 64
(o) = [ ,oj;

1 +64 1+ 64),
(x29y2): - 2\/5 5 > 5
_1+6A _1+6A

o3 2]'

The corresponding Jacobi integral can be written
as

(x3’ y3) =

C = 20 — X+ y'+ z%),

Where C is the Jacobian constant. Zero velocity
surfaces for this problem are shown in the Fig
2(a), 2(b) and 2(c) for different oblateness
parametre.

Fig. 2 (a) Surface of zero- velocity for A=0.005.
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Table 1 Stability table for A=0.05.

65

Zin A T p q Result
0.8010232 0.05 4.93737 -1.05698-4.12738i -1.05698+4.127381 Unstable
1.0475939 0.05 5.53443 -1.18304-0.12629i1 -1.18304+0.126291 Unstable
1.3562737 0.05 6.00899 -0.43893-0.760741 -0.43893+0.760741 Unstable
1.5447426 0.05 6.21043 -0.19218-0.967791 -0.19218+0.96779i Unstable
1.7768767 0.05 6.40107 -0.25376-0.78482i -0.25376+0.78482i1 Unstable
1.8868767 0.05 6.47516 -0.46357-0.44274i -0.46357+0.442741 Unstable
1.9235451 0.05 6.49797 -0.55226-0.19137i -0.55226+0.19137i Unstable
1.9000000 0.05 6.48342 -0.49499-0.372961 -0.49499+0.372961 Unstable
1.9300000 0.05 6.50189 -0.56781-0.093991 -0.56781+0.09399i Unstable
1.9320000 0.05 6.50311 -0.57259-0.01680i -0.57259+0.01680i Unstable
1.9325000 0.05 6.50341 -0.616801 -0.530759 Stable
1.9327500 0.05 6.50356 -0.628381 -0.520368 Stable
1.9330000 0.05 6.50371 -0.638073 -0.511865 Stable
1.9340000 0.05 6.50432 -0.668106 -0.486577 Stable
1.9350000 0.05 6.50492 -0.691447 -0.467968 Stable
1.9356451 0.05 6.50531 -0.704601 -0.457857 Stable
1.9469551 0.05 6.51209 -0.857111 -0.357457 Stable
1.9569551 0.05 6.51801 -0.949192 -0.308667 Stable
1.9622789 0.05 6.52115 -0.990633 -0.288784 Stable
1.9722697 0.05 6.52697 -1.05792 -0.258238 Stable
1.9845324 0.05 6.53405 -1.12422 -0.258244 Stable
1.9902327 0.05 6.53731 -1.1491 -0.215945 Stable
2.0000000 0.05 6.66816 -1.18254 -0.195993 Stable
2.1500000 0.05 6.54285 1.8315+1.12082i 1.8315-1.12082i Unstable
2.2500000 0.05 6.66816 6.30708 8.03711 Unstable

Table 2 Stability table for A=0.5.

Zin A T P q Result
1.8868767 0.5 4.33124 -3.60933-3.41153i -3.60933+3.41153i Unstable
1.9000000 0.5 4.34297 -0.470723 1.60923 Stable
1.9235451 0.5 4.36364 -0.559094 1.60131 Stable
1.9356451 0.5 4.37410 -0.603030 1.59658 Stable
1.9469551 0.5 4.38376 -0.643225 1.59179 Stable
1.9902327 0.5 4.41982 -0.789642 1.59179 Stable
2.1500000 0.5 4.54133 -1.24247 1.46356 Stable
2.2000000 0.5 4.57629 -1.359120 1.4234 Stable
2.2195234 0.5 4.58905 -1.40058 1.40774 Stable
2.2199934 0.5 4.58936 -1.40158 1.40735 Stable
2.2239599 0.5 4.592 -1.41005 1.40404 Stable
2.2249599 0.5 4.59266 -1.41102 1.40438 Stable
2.2249999 0.5 4.59269 -1.41225 1.40317 Stable
2.2500000 0.5 4.60908 -1.46405 1.38206 Stable
2.2600000 0.5 4.61554 -1.48408 1.3735 Stable
2.2700000 0.5 4.62194 -1.50374 1.36487 Stable
2.2800000 0.5 4.62829 -1.52302 1.35618 Stable
2.2900000 0.5 4.63458 -1.54193 1.34743 Stable
2.3000000 0.5 4.64082 -1.56047 1.33863 Stable
2.3100000 0.5 4.64701 -1.57866 1.32977 Stable
2.3200000 0.5 4.65314 -1.59649 1.32086 Stable
2.3300000 0.5 4.65923 -1.61398 1.31191 Stable
2.5000000 0.5 4.07532 -1.86265 1.15383 Stable
2.5500000 0.5 4.82983 -1.90280 1.10594 Stable
2.6000000 0.5 4.80596 -1.9718 1.05771 Stable
2.6300057 0.5 4.8204 -2.00000 1.02862 Stable
2.6300570 0.5 4.8205 -2.00004 1.028620 Unstable
2.6433000 0.5 4.82669 -2.01969 1.007070 Unstable
2.6500000 0.5 4.82983 -2.01771 1.009300 Unstable
3.0005700 0.5 4.97428 -2.21686 0.674617 Unstable
3.5000000 0.5 5.12804 -2.28262 0.249255 Unstable
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3. STABILITY

Writing the Equation of motion in phase space,

Let
X =X,y = X,,2Z = X,
X = X,y X, 2 = X,
X, = X,X, = X, X, = X,
(6)
x, = 2x; + Q,
X, = =2x, + Q,
x, = Q,
Thus the Equation of motion in phase space are
x, = filx), i=12,..,6. (7

x71+6A
1 ! J3
fi = 2x; + x, - = >
3 2 2
1+ 64 2 3
xl— \/g -i-.)62+)63

| 1+ 64
N 2N G
T MR G = /I G e R

Fig. 2 (¢) Surface of zero- velocity for A=0.75.

The Sitnikov motions can be obtained also from (x N (1 + 6AD2 . [x . (1 + 6AD2 g
the equations of restricted four body problem as a ' ’
special case, i.e. when

1
m1:m2:m3:§and x—l+6A)
0.

1
+34 \/5

C=x-7 (5)
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®)

are unique solution of the Equation (7), where O.;’s
represent the initial conditions.

The known solution of the Equation (7) as the
unperturbed motion is (8) and defining the
solution of these equations in the neighborhood of
the unperturbed motion, the latter motion can be
expressed in the form
x,(1) = ¢,(0) + &,(0), &,(1)

9
<< 1, i = 1,2,3,...6. ©)

where the function ¢ (¢), constitutes a known
solution of the Equation (7) and the function &, (¢),

referred as the perturbation.

Introducing Equation (9) into Equation (7) and

recalling that the functions ¢ (f), satisfying
Equation (7), we obtain
EN = fi(h b b T E) (10)

_fi (¢17 ¢2’ ..

which are known as differential equations of the
perturbed motion. The origin & = 0 is a trivial

cag), i=1,2...6

solution of these equations. Expanding the
Equation (10) about the origin, we obtain

. 6

E=DLOEO+¢E (A, ¢.0.6.6.4.1),
j=1

i=1273,..6.

where

(11)

are either constant or periodic, and the function &,

D bs s+ - - s &

containing terms of second and higher powers in
these variables.

are power series in

The perturbation @, generally results from
small distribution of unknown sources. Let us
assume that the perturbation is sufficiently small
to permit the second order terms in ¢ to be

approximates as

. 6
=D fém,i=12...,6. (2

Equation (12) is known as the variational
equations of Poincare. Equation (12) constitutes a
set of simultaneous linear differential equations
with periodic coefficients. To study the stability of
these types of equations we use the Floquet’s
theory.

Now, we let ¢(f) be the solution of the system
(12), corresponding to the
o) = [e.] ,i =1,2,.... 6 .Here [el.] is

1

initial condition
a unit vector whose typical vector {ei} is defined

as having all of its components zero except for the
i"™ components which are equal to 1. This is simply
a column of the identity matrix. ¢(¢) is then said

to be the fundamental set or linear basis. The
6 x 6 matrix [go(t)] with its columns consisting

of a set of linearly independent solutions of the
system (12) is called the fundamental matrix
satisfying the matrix equation

. 6
P, =Y fOe Li=12..,6 (3
K=1

fundamental matrix of then,

[p)] is a
[qp(t + T )] is also a fundamental matrix. Here T
is the period of then, there exist a non-singular
constant matrix [C] such that

[t + D] = [e0)] [C],

where the matrix [C ] 1S sometimes referred to as

(14)

the monodromy matrix of the fundamental matrix
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[¢(t)]. But a matrix[R] can be found which
satisfies

[C] ™. (15)
So that from the Equation (14) and (15), we have
[oe + D] = [po] . (16)
Next, let us define the matrix [Q(t)] by

[00)]

Now from the Equation (16),
[Oo¢ + T)] = [gp(t + T)] D R

[p@)] e ™. (17)

(18)

Hence [Q(t)] is a periodic matrix with periodT .

Lett = t, = 0O, then

[p@0)]  [pO)] IC]

or

[C1 [O)] . [pD)] (19)
or,

C [oD)]as[pO] 1.
Thus from the equation (15)
[¢(T)] — eT[R — C

or,
T[R]  logl(]

1
= [R] ; log[(C] (20)

Now, the characteristic polynomial associated with
the matrix ‘ fu‘ is defined by the characteristic

determinant
[C] - Al = 0; @1

Where i = 1, 2, ...., 6.

And A, A,, A, . . ., A, are characteristic

multipliers for the system (12).

[R], denoted by
., P, are called the characteristic

The eigen values of
Pris P> Pss - -
exponents associated with the periodic matrix ‘ fy‘

and are related to the characteristic multipliers by
A = e, i 12, ..,6. (22)

Whereas

uniquely defined and the real parts of the
characteristic exponents p;are defined uniquely

by

the characteristic multipliers A, are

P % [log ‘/Ij‘ + i arg ﬂj] ,

Jj 1, 2,3, .., 6. (23)
The imaginary parts are determined up to an
integral multiple of 27” This enables us to reach

the followings conclusions:

If all the characteristic exponents have negative
real parts, all solutions of Equation (12) are
asymptotically stable,

lim {@@)} = 0, Re(p,) < O

t— o

Re |4] < 1, j=12,..,6.

Here A, A, 4, ...

multipliers of the system (12) and so its complex
conjugate. From the Equation (21) the determinant
of the characteristic polynomial is

A — 1A + AL + BA?
+A4 + 1) = 0,

A, are the characteristic

(24)

Where
4 2-T [o0)

5= [ - (1 [om - 2]

And T is the trace of matrix [go[T ]] . The Equation
(24) can be written as
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(A -1 (A7 + pA+1)(4 + g2 +1) =0
where
p+q=4 pg =B-2.

The stability of the system (12) is given by the
conditions

|p| < 2 And|g|] < 2.

(George Katsiaris, 1971) [15]

We have solved the system of the Equation (14)
for different z,,,, applying initial conditions as

stated before and for different oblateness
parametre, we have found the different set of
characteristic ~polynomials and consequently
different set of characteristic multipliers from
which we have evaluated p and ¢ . The results are

shown in the Table-1 and Table-2.

4. CONCLUSIONS

We have find out the Equation of motion of
Sitnikov problem where all the primaries
are oblate spheroid. Then we have shown the
stability of the motion of the problem. We
have observed that when we increase the
oblateness parameter the stability interval
increases. When A=0.05 the motion is stable for
Zyiwa € [1.932500, 2.000000] and when A=0.5, the

motion is stable for z, ., e [1.900000, 2.6300057].

i
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