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Abstract: In the geometric function theory much attention is paid to various fractional operators
(differential and integrals) mapping the class of univalent functions and its subclasses into themselves. The
classical definitions of fractional operators and their generalizations have fruitfully been applied in
obtaining, for example, the characterization properties, coefficient estimates, distortion inequalities and
convolution structures for various subclasses of analytic functions and the works in the research
monographs. Here, we introduce a generalization for the well known fractional operators in the unit disk
ie. U={z: |z|<l } due to H. M. Srivastava and S. Owa. Some analytic and geometric properties are

obtained.
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1. INTRODUCTION

Srivastava and Owa [1] imposed definitions for
fractional operators (derivative and integral) in the
complex z-plane C as follows:

Definition 1.1 The fractional derivative of order
a is defined, for a function f(z) by

el et
F(l— ) dz°0 (z—
0<a<l,

where the function f(z) is analytic in simply-

connected region of the complex z-plane C
containing the origin and the multiplicity of

(z-=¢) " ¢) to

be real when (z —

is removed by requiring log(z —

£)>0.

Definition 1.2 The fractional integral of order &
is defined, for a function f(z),
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Where o>0, the function f(z) is analytic in

simply-connected region of the complex z-plane
(C) containing the origin and the multiplicity of

(z=¢)" ) to

be real when (z —

' is removed by requiring log(z —
£)>0.

In [2], Ibrahim derived a formula for the
generalized fractional integral, consider for natural
neN={1,2,..} and real u, the n-fold integral
of the form

= [[¢rag,[¢rac,
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Employing the Dirichlet technique yields
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Repeating the above step 7 —1 times we have
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which implies the fractional operator type
19 £(2)=
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where @~ and u # —1 are real numbers and the
function f(z) is analytic in simply-connected
region of the complex z-plane C containing the
origin and the multiplicity of (z**' —¢*")™ is
removed by requiring log(z*"' —¢**") to be real
when (z*"'=¢#")>0. When 1 =0, we arrive
at the standard Srivastava-Owa fractional integral,

which 1s used to define the Srivastava-Owa
fractional derivatives. It was shown that

v+u+l
—)
u+1
v+u+l1’
——)

u+1
where >0, p>0 and v>-1. Corresponding to the

generalized fractional integrals (2), we define the
generalized differential operator

Za(/t+1)+v (

(u+1)* IN'a+

au_v _
z

Definition 1.3 The generalized fractional
derivative of order « 1is defined, for a function

f(2) by

D ()= &)
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where the function f(z) is analytic in simply-

connected region of the complex z-plane C
containing the origin and the multiplicity of
(Z/H—l _éf/ﬁ—l)—a iS

removed by requiring

log(z*" = ¢+ to be real  when
(z*" = ¢*")> 0. We have

(u+1)*
Da,yzv _ 1 Z(l—a)(,u+1)+v—l.

Y +l-a)
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Recently, various results, as convolution and
inclusion properties, distortion theorem, extreme
points, coefficient estimates etc., are proposed by
many authors for the operators due to Srivastava
involving the Wright function, generalized
hypergeometric function and Meijer's G-functions.
These operators are Dziok-Srivastava, Srivastava-
Wright, Cho-Kwon-Srivastava operator, Cho-
Saigo-Srivastava operator, Jung-Kim-Srivastava
and Srivastava-Owa operators (see [3-11]).

In the recent work, we shall concern about a
class of analytic functions [12]: for positive
constant k

A, = {feH:f(z)=Z+iak+nzk+"}.

n=1

It is clear that A, = A the normalized class with

f(z)=z+ ianzn.

n=2
A function f(z)e A [Jis said to be starlike of

order £ in U if it satisfies R{ ; (Z)} > [ for

some 0< S <1.

We need the following lemmas in the sequel
which can be found in [12].

Lemma 1.1 Let f(z)eA, Uand let 0< f<1.
If f satisfies

" k(k+1)(1-
|zf"(2)|< kk+1HA-5)

k+1-p4
then f(z) is starlike of order £ in U.

Lemma 1.2 Let f(z)eA, and 0SS <k. If f
satisfies

|2/ (D)-D|<k-p

then f(z) is starlike in U.

Lemma 13 Let f(z)eA, , 0<p<IUand
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0< f<k.1If f satisfies

e gy D= gy A D S |

k+1-n then the operator ®“* f(z) is starlike of order £
then f(z) is starlike in U. where
e 1-2(k+ D)@y |a,, |
1=-2¢77 | ay |
2. MAIN RESULTS Lok 1 H+k
We introduce the following extension operator Proof. By applying Lemma 1.1, we impose
| | (@™ f(2))" [ D gk (n+ )+ k=D)a,, 2"
n=1
I'—+1-a)
O f(z)= 7 DI f(2) <l (n+k)(n+k-1)|a,, |
(u+D)“ " T'(——+1) =
u+1 ©
1 =Gk K) [ ay, |+ gt (v )+ k=1 a,., |
F(il +1- 0!) n=2
= s 1 O DEH () <240t k(1+k) | ay, |
(u+ D) +1) k(k+1)(1-5)
1 <——F—
. k+1-p4
) K +l-a
+>a,,z"") = K ZoTH Thus ®** f(z) is starlike of order /.
= a-1 1
n=l (u+D)""I'(——+1)
u+1 ..
Theorem 2.2 Let f € A, . If for positive constant
a-1 1
(u+D)"T(——+1) k
X[ M +1 Z—a+,u—/4a+1 1
L +1-a) (k+ D@ L ay, [<
a+1 2
and
I UL o
e A DHk(n+k)n+k-1-p)la,, |
- n+k n=2
ST L —g) )
'u+1 S(k+1)(k_ﬂ)¢l+)ky |al+k |
. 1"(*1 +1-a) T +l§ +1) ( 4$hen the operator ®“* f(z) is starlike of order S
+> 4 +1 X f/: a,, z"" = where [ <k.
RICSR) r [Hl-a)
a a Proof. By employing Lemma 1.2, we get
z+ ) pina, 2" | 2(@* f(2))" = (@™ f(2) =) |
n=1 sl
=D gt (n+ k) n+k=1-pa,,z"" |
Obviously, when k=1,u4=0 we have the -l
extension fractional differential operator defined < z¢j‘+f (n+ky(n+k-1-p)|a,., |
in [13] ( [14] for recent work), which contains the n=1
Carlson and Shaffer operator. =gl k+1) k-] a,, |
a.u
Theorem 2.1 Let f € A,. If for positive constant + Z:;¢n+k (n+k)n+k-1-p)|a,.,|
k | <2475 (k+1)(k = ) | ay., |
(k+Dgi | ay, |<E <k-p.

and Thus ®@“* f(z) is starlike of order f.
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Theorem 2.3 Let f € A, . If for positive constant
k

o 1
(k + 1)¢1+l: ‘ Ak ‘< 5

and

0

S+ k)n+k-1-n)|a,, |

n=2

S(k+1)(k=-n)e’ il a,, |

then the operator ®“* f(z) is starlike of order /3
where

=20+ D [ ay |

B z
1- 2¢1+’k# ‘ Ay |

Proof. By using Lemma 1.3, we get

| 2( @™ f(2)" = (@ f(2) - 1)
=Dt b)Y+ k=1=1)a, 2" |

< i (n+k)n+k—-1-n)la,,, |
n=1

=gl (k+1)(k=mn)|a,, |

+Y it (n+k)n+k-1-n)|a,., |
n=2

<250 (k+D)(k=m) | ay,, |
e+ DA =)k —1)
k+1-p '
Thus ®“* f(z) is starlike of order f.

3. CONCLUSIONS

An extention fractional differential operator are
defined in the unit disk for some class of analytic
functions taking the form

A, ={feH: f(9)= Z+Zak+nzk+"}. Furtherm

n=1
ore, starlikeness conditions are imosed depending
on results due to Kuroki & Owa.
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