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1. INTRODUCTION

Let A(p) denote the class of functions of the form:

f(2)=2" +§a 2 (peN={12..}), (1.1)

k+p

which are analytic and p —valent in the open unit
disc U={z :|z|<1}. A function f(z)e A(p) is
said to be in the class S («) of p-—valently
starlike of order «, if it satisfies

Re{w}>a O0<a<p;zel). (1.2)

f(2)

We write S (0)=S_, the class of p—valently
starlike in U . A function f(z) e A(p) is said to
be in the class K («) of p-—valently convex of
order « , if it satisfies

Re{1+w}>a O<a<p;zel). (1.3)
f'(z)
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It follows form (1.2) and (1.3) that

f(2)eK, (@) o 1@

€S (a) (0<a<p). (14)

The classes S () and K (a)were studied by
Owa [1] and Patil and Thakare [2].

Furthermore, a function f(z)e A(p) is said
to be p—valently close-to-convex functions of
order £ and type y in U, if there exists a

function g(z) €S, () such that

zf'(2)

Re{—}>ﬁ OB, y<p;zel). (1.5)

9(2)
We denote by B, (/,7), the subclass of A(p)

consisting of all such functions.
B,(8,7) was studied by Aouf [3].

The class

Suppose that f(z) and g(z) are analytic in
U. Then we say that the function g(z) is
subordinate to f(z)if there exists an analytic
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function w(z)in U with |w(z)|<|z| for all
ZzeU, such that g(z)=f(w(z)), denoted
g=<f of g(z2)<f(z). Incase f(z) is univalent
in U we have that the subordination g(z) < f(z)
is equivalent to g(0)=f(0) and gU)c fU)
(see [4]; see also [5],[6, p. 4]).

For the functions f,(z) (j =1,2) defined by

fj(z)=zp+éak+p,jzk+p (peN) (1.6)

we denote the Hadamard product (or convolution)
of f(z)and f,(z) by

(fl * fz)(z) = Zp + kZ::la‘ker,la'k+p‘ZZk+p * (17)

Let M be the class of analytic functions
¢(2) in U normalized by ¢(0)=1, and let S be

the subclass of M consisting of those functions
@(z) which are univalent in U and for which

p(U) is convex and Re{p(z)}>0(zeU) .

Making use of the principle of subordination
between analytic functions, we introduce the

subclasses S (@), K (@) and C (p,w) of the
class A(p) for ¢, w €S, which are defined by

S;((p)z{f fenp) and 22D o) in u},
pf(2)

f'(2)
f: feA(p) and Ihe

Kp(9) st. A0] <wy(z) in U

h'(z)

Kp(@:{f + feAlp) and i[“ Zf”(z)j«p(z) in U},
Cp(¢’\V)=

We note that for p=1, the classes

S/ (9)=S"(9), Ki(¢)=K(¢)and
C,(p,w =C(p,w) are investigated by Ma and
Minda [7] and Kim et al [8].

Obviously, for special choices for the
functions ¢ and  involved in the above

definitions, we have the following relationships:

« (142 .
{7 )=s

(sz Sh(@) 0O<a<p),
1-z

Sp

1+z
Kp(EJ:Kv '

Kp(%j: K,(a) (0<a < p),

Cp[1+z’1+zjch'
1-z 1-z

cp(PHlp_—ZZv)zl p+(1p_—22°‘)zj=cp(ﬁ,v) (0<By<p).

Furthermore, for the function classes S [A,B,«a]
and K [A B,a] investigated by Aouf ([9, 10], it is
easily seen that

;(%jzs;[;\, B,a](-1<B<A<L0<a< p)

(see Aouf [9]),
And

L[BH(A-B)1-2)] )
K,| —ss—2= |=K,[AB,a](-1<B<A<L0<a<p)

(see Aouf [10]).

For real or complex number a,b,c other than
0,-1-2,... , the hypergeometric series is defined
by

o7y = & @ B) i
F(a,b;c;z) =Yy ~ -k 7%
HEREDTE 0,0,

where (x), is Pochhammer symbol defined by

(1.8)

(),

CT(x+k)  [x(x+1)..(x+k-1) (keN;xeC),

x|t (k =0;k € C\{0}).
We note that the series (1.8) converges
absolutely for all zeU so that it represents an

analytic function in U (see, for details, [11,
Chapter 14]).

Now we set
Zp
Lo @)=y @>P)

and define f, (z) by means of the Hadamard

(1.9)

product
f,,(@=f(2)=2" R(abicz) (zeV), (1.10)

This leads us to a family of linear operators
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Lp@b0)= 0@ (2)

(1.12)
(a,b,ceR\Zy, A>—-p, peN,zel).
After some computations, we obtain
= (a)(b) .
l,,@bo)f(z)=2"+y a7 (1.12)

GE)(A+p),

From (1.12), we deduce that
l,,(@A+p,a)f(z)="1(z2)(1>-p,peN)
and
I, (p+Lp+Lp)f(z)=
z(IM’p(a,b,c)f(z))’ =(A+ p)Ix]p(a,b,c) f(2)

zf'(2)
—p :

13
Al (@ bc)f(2) (A>-p), :
and
2(1;, 5 (a,b,c) f (2)) =al, ,(a+1b,0)f (2) (1.19)

—(@-p)l; p(a,b,c)f(2).
We note that;

i I,,@p+La)f(z)=1,,,(n>-p), where
l,.,. is the Noor integral operator of

(n+ p—1)—th order (see Liu and Noor [12]
and Patel and Cho [13]);

(i) 1,(p+Ln+pf(z)=D"""f(z)(n>~p),
where D"**f(z) isthe (n+ p—-1)—th

order Ruscheweyh derivative of a function
f (2) € A(p) (see Kumar and Shukla [14]);

(i) 1,,(@2a)f(z)=1,1(z) (n>-1), where I,

is the Noor integral operator of n—th order
(see [15]);

(iv) 1, ,(@p+La)f(z)=Q""f(2)
2 I'(k+p+Hr(p+1-2) 8. ke p
kaD(p+)r(k + p+1-2)
=2P , R p+Lp+1-2;2)* f(2)
(~o<A<p+LzeUl).

The operator QY was introduced and
studied by Patel and Mishra [16]:

Ix'p(c+p,k+p,c+p+1)f(z)
Y st @ ) |
where J_ is the generalized Bernardi-

Libera-Livingston operator defined by (3.1)
(see [17]);

La(wbb)f(2)=1,,1(2)
(A>-1Lu>0, f(2)e A=A’
where 1, is the Choi-Saigo-Srivastava
operator (see [17]).

(vi)

We also note that:

Lo(ubb)f(2) =17 f(2) (A>-p,u>0, t(2) € A(p)),
where 17 is the generalized Choi-Saigo-
Srivastava operator (see [17]) defined by

z (1) + o
I;?#f(z):zp_i_émaszk P (ﬂ.>—p,,u>0,ZeU).

Next, by using the general operator
l,,(a,b,c), we introduce the following classes of

analytic p —valent functions for

f:feA d
S;vp(a’b,cid)):{ € A(p) an }

1, 5(@,b,0) F(2) €S} (0)

Ky p(@b,c;0) ={
And

f: feA(p)and
L p(@b,c)f(2) eK ()]’

Ck,p(aab,C;(I),\ll)z{f + e A(p)and }

1»(@b,0) T (2) €Cy (6. w)

We also note that

f(z)eK, (ab,cip) @Lp(z)esz,p(a,b,c;(p). (1.15)

In particular, we set

. 1+z .
Sn,p(ar p+11 aan = Sn-+—p—1 (n > _p)’

1+ Az

S’ |ab,c;——|=S; |a,b,c;AB| (-1<B< A<1),
“’( 1+sz "p[ I )
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and

Kl‘p(a,b,c;l-} Az

1+Bz

j: K,,lab,c;AB] (-1<B<A<I),

Inclusion properties was investigated by
several authors (e.g. see [18], [19], [20] and [21]).
In this paper, we investigate several inclusion

properties of the classes S (ab,c;¢),
K..(@b,c;p) and C, (ab,c;p,w) associated
with the general integral operator 1, (a,b,c).

Some applications involving these and other
families of integral operators also considered.

2 . INCLUSION PROPERTIES INVOLVING
Iﬂ’ D

To establish our main results, we shall need the
following lemmas.

Lemma 1 [22]. Let h be convex univalent in
U with h(0)=1 and

Re{ph(z) + u}>0 (B,u<C).
If g(z) is analytic in U with q(0) =1, then

2q'(2)
q(z)+m<h(z) (zeU)
implies that q(z) <h(z) (zeU) .

Lemma 2 [23]. Let h be convex in U with
h(0) =1. Suppose also that Q(z) is analytic in U

with Re{Q(z2)}>0(z€U). If q(z) is analytic in
U with q(0) =1, then

d(2) +Q(2)zq'(z) <h(z) (zeV)
implies that q(z) <h(z) (zeU).

Theorem 1. Let A>—p, a>p and peN. Then
S,.p@+Lbco)cS; ,(ab,c;o)

c S):l, p (a7b7C;¢) ((I) € S)

Proof. First of all, we show that
S, p(@+Lb,c;9)

cS; p(abcd) (deS;A>—p;axp;peN).

Let f(2)eS; (a+1Db,c;p) and set

21, ,(ab,o)f (@)
pl,,(@bc)f(z)

q(2), (2.1)

where q(z)=1+0,z+0,z° +... is analytic in U
and q(z)=0 for all zeU. Using the identity
(1.14) in (2.1), we obtain

I, ,(@+1b,c)f(z)
I, ,(@b,c)f(z)

=pg(z)+a-p. (2.2)

Differentiating (2.2)
respect to z, we have

logarithmically  with

1, @+1001@) _20,,@00f@)  x
l,,(@+Lb,c)f(z) N l,@bc)f(z) paz)+a-p (2.3)
_ 19
=0+ pq(z)+a-p

Since axp, p(z)eS, and f(z)eS; (a+Lb,cip),
from (2.3) we see that
Re{pp(z)+a—p}>0 (zeU)
and
() +— 292

——<p(z2) (zeU)
pg(z)+a-p

Thus, by using Lemma 1 and (2.1), we
observe that

q(2) <e(z) (zeU),

so that
f(z)eS; (ab,cip).

This implies that
S; (a+Lb,c;p)=S; ,(a,b,c;p).

To  prove the
f(z) €S; ,(a,b,c;¢9)
put

2(1,4,@b,0)f(@)
pl..,(@bo)f(z)

second part, let
(A>-p; a=p; peN) and

9(2),

where g(z)=1+d,z+d,z*+... is analytic in U
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and g(z)=0 for all zeU. Then, by using

arguments similar to those detailed above with the
identity (1.13), it follows that

9(2) <9(z) (zeU),
which implies that f(z)eS;, (a,b,c;¢). Hence
we conclude that

S; ,(@+Llb,cip)cS; (ab.cp)=S;, (abce),

which completes the proof of Theorem 1.

Putting A=n,c=a, b=p+1 and ¢(z)=%2(z€U) in
Theorem 1, we obtain the following corollary.

Corollary 1. Let n>—p and peN. Then
S

* *
n+p-1 - Sn+p '

Remark 1. Putting p=1 in Corollary 1, we
obtain the result obtained by Noor [15].

Theorem 2. Let A>—p, a>p and peN. Then
C,p(@a+lb,c;¢)=C, (ab,c;0)

cCp(@b,c;d) (9€8).

Proof. Applying (1.15) and Theorem 1, we
observe that

f(z)eCK, p(a+1,b,c;(1))
<1y pa+lb.e)f(z)eKp(d)
=&, p(@+Lb.)f(2))' e Sp(9)

ol p(a+1,b,c)(2fgz)jes’5(¢)

zf'(2)
p

N zf 'éz)

eS;; p(@+1b,c;0)

€Sy o(@.b.ci9)

ol p(a,b,c)(ip(ﬁjes’f)(q))

!

= (1, @b (@) SH®)
Sy p(a,b,c)f(z)e Kp(9)
& f(z)ecxlp(a,b,c;cb)

and

f(z) e K, p(ab,c;9)

@ip(z—)eszyp(a,b,c;d))

= ip(z—) €S, p(ab,c;9)

& £(hap@bo)f (@) €S,(0)
& 1 ,(@b,0)f(2) e K, (9)

& f(z2) e Ky p(@ab,c;o),

which evidently proves Theorem 2.
Taking

1+ Az

Z
#(2) 1+Bz

(-1<B<A<lzel)

in Theorem 1 and 2, we have

Corollary 2. Let and

—-1<B<AL1.
Then

Sipla+lb,c;AB]cS; ,[ab,cAB]
=S, plab.cAB|

A>—p,azp, peN

and
K,.pla+Lb,c;AB]cK, ,[ab,c;AB]

c Kmlp[a,b,c;A,B].

Theorem 3. Let A>-p, a>p and peN. Then
C, p@+lb,cio,¥) =C, ,(ab,c;o,v)
<G p(avbrC;(I)l\V) ¢y eS).

Proof. We begin by proving that

C,p@+lb,cio,w) =C, ,(a,b,c;0,v)
(A>-p;a=p; peN;p,yeS).

Let f(z)eC, ,(a+Lb,c;p,i). Then, in view of
(1.7), there exists a function h(z) €S (p) such

that
z(IM(a+1,b,c)f(z))’

ph(z)

<w(z) (zeU).

Choose the function  g(z)such that
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l,,(@a+Lb,c)g(z)=h(z). Then g(z)eS; (@+Lb,cp)
and
z(1, ,(@+Lb,c) f(2)) v(2) (zeU). (2.4)

pl, (@+1b,c)g(z)

Now let

!

i N
z(lﬁ,p(a,b,c)g(z))' +(@-p)l,,(@ab,c)g(2)

(1, ,(a+1b,c)f(2))
pl, ,(@+1b,c)g(z)

=q(2), (2.5)

where q(z)=1+q,z+a,z°+... is analytic in
U and q(z)=0 for all zeU . Thus by using the
identity (1.14), we have

Ilvp(a+1,b,c)(¥@J
Ilvp(a+1,b,c)g(z)

(1, ,(a+Lb,c)f(2)) B
pl,(@+Lb.0)g(@)
z{l N p(a,b,c)[ﬂ;,ﬁ} " p(a,b,c){i(p@)}

L p@boe@ @R T @b
2(1, p(@b,0)9(2))
I/i, p(a,b,c)g(z)

+(a-p)
(2.6)
Since g(z)eS; (a+Lb,c;p)=S; (a,b,c;p) (peS),
by Theorem 1, we set
z(1, ,(a,b,c)g(2)) _G(2).
pl,,(ab,c)g(z)

where G(z) <¢(z) (zeU) for @€S. Then, by
virture of (2.5) and (2.6), we observe that

ﬂpwbc{ﬁ;”j 4@, ,@bog@) (27)

and

1))

z{l/1 p(a,b,c){z'(pZ
'1 p(a b,c)g(2)

(a+1,0)f (2)) +(@-p))

Z(li,p (
pli’ p(a+1,b,c)g(z) pG(z)+a-p

. (2.8)

Differentiating both sides of (2.7) with respect

to z, we obtain

z[llvp(a, b, c)[%@))r

1,,(@b,0)g()

=pG(2)q(2)+29'(2).  (2.9)

Making use of (2.4), (2.8) and (2.9), we get

2(1, ,(@+Lb,c)f (2)) _ pG(2)q(z) +29'(z) + (a- p)q(z)

pl, ,(@a+Lb,c)g(z) pG(z)+a-p
- q(2)+p(3(22(§% <w(2) (zeU). (2.10)

Since a>p, peN and G(z) < ¢(z) (z€V),

Re{pG(z)+a—-p}>0 (zeU).
Hence, by taking

1
)= G@rap

in (2.10), and applying Lemma 2, we can show
that

p(2) <w(z2) (zeU),
so that

f(2)eC, (ab.cioy) (pyeS).

For the second part, by using arguments
similar to those detailed above with the identity
(1.13), we obtain:

C..@abcoy)cC, (@bcoy) (pyes).

The proof of Theorem 3 is thus completed.

3. INCLUSION PROPERTIES INVOLVING
Jo, D

In this section, we consider the generalized
Bernardi-Libera-Livingston  integral  operator

J,.,(0>—p) defined by (see [24],[25],and [26]).

HND=Z pﬁ“f()OIt (feA(p)io>-p).

(3.1)

Theorem 4. Let o>-p, A>-p,a>p and
peN.If f(2)eS; (ab,c;p)(peS), then
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3., (F)(@) €S, (ab.cip) (pe9).

Proof . Let f(z)eS, (a,b,c;p) for peS, and

set
2(1,,(.b.0)J, (@)
pl.,(@b,0)J, (@)

q(z), (3.2)

where q(z)=1+@,z+q,z° +... is analytic in
Uand q(z)#0 for all zeU. From (3.1), we
obtain

2(1; p(a,b,¢)J; o ()(2)) =(c+ P, ,(a,b,c) f(2)

3.3

—ol; p(@b,c)d; ,(f)(z) (zeU). (33)
By applying (3.2) and (3.3), we obtain

(04 p)—2@POT@D 0y o (e

I, .(@b,c)d,  (f)2)

Differentiating (3.4) logarithmically with respect
to z, we obtain

z(1,,(@b,c)F(z))" _ )+ 19()
I, ,(@b,c)f(z) pa(z) +o

(3.5)

Since o>-p, p(z) €S, and f(2) €S (¢),
from (3.5), we have
29'(2)

Re{pp(z)+o}>0 and q(z)+ o)+

Hence, by virbure of Lemma 1, we conclude
that q(z) <e(z) (zeU),

which implies that
3., ()@ €S, (ab.cip) (pe9).

Next, we derive an inclusion property
involving J, ,, which is given by
Theorem 5. Let o>-p, A>—-p,a>p and

peN.If f(z)eK, (ab,c;p)(peS),then
J5.(F)(@) eK, (ab.cip) (pel).

Proof . By applying Theorem 4, it follows that
zf'(2)

f(z)eKLp(a,b,c;(p)@ eS;p(a,b,c;go)

<¢(z) (zeU).
o

:vap{ngz)jesilp(a,b,c;@

@%(chp(f)(z))' €Sy ,(a,b,ci0)

<, ()@ eK, (abco) (pesS),

which proves Theorem 5.
Finally, we prove

Theorem 6. Let o>-p, A>-p,a>p and
peN.Iff(2)eC, (ab,cio,v) (o, eS), then

35,()@ eC, (@b.coy) (pweS).

Proof. Letf(z)eC, (a,b,c;p,p) for g,y eS.

Then, in view of (1.7), there exists a function

9(2) €S, ,(a,b,c;p) such that

z(1, ,(a,b,c) f(2))
pl, ,(a,b,c)g(z)

<w(2) (zeU). (3.6)

Thus we set
z(1,,(@b,c)d, ,()@)" _
pl, . (@b,c)d, ,(f)(2)
where q(z)=1+q,z+q,z°+... is analytic in
U and q(z)#0 for all zeU . Applying (3.3), we
get

a(z),

zf'(2)
Z(Iz,p(a,b,C) f(2)) ~ Il,p(a;b,c)(Tj

pl,,(ab,c)gz)  1,,(ab,c)g(2)

_ Z('A,p(a,b,C)Jg,p(g)(Z))l+0U,p(a,b,C)Ja,p(g)(Z)

z(ll,p(a,b,C)Ja‘p(%QD' 'Lp(a’b’c)J”*’(wj

l,,(ab,c)g(2) 1,,(ab,0J,,0(2)
(1, ,(ab,0),,(0)@)
+0
l,.(ahb,)J, 9(2)

(3.7)
Since g(2) e S;p(a,b,c;go) (peSs), by virtue
of Theorem 4, we have J, (9)(z)€S; ,(a,b,c;¢).
Let us now put
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2(1,,,(ab.03,,(9)@) _
pl..,(@b,0)J, ,(0)@)

H(2),

where H(z) <¢(z) (zeU) forpeS. Then, by

using the same techniques as in the proof of
Theorem 3, we conclude from (3.6) and (3.7) that

(1, ,(ab,c)f(z)) W@ )
m_q(mpmz)m*‘”@ (zeV). (3.8)

Hence, upon setting
1
7)=——— (z€U
Q(2) HD o (zeV)
in (3.8), if we apply Lemma 2, we obtain

q(2) <y (2) (zeU),

which yields
1,.(H@eC, @bcpy) (pwes).

The proof of Theorem 6 is thus completed.
Remark 2.

(i) Putting a=x>0 and b=c in the above
results we obtain the corresponding results,
for the operator 1] ;

(if) Putting b=p+1, a=c and replacing 1 by
1-4, o< A< p+1lin the above results, we
obtain the corresponding results for the
operator Q.
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