Original Article

Some Inclusion Properties of Certain Operators

M.K. Aouf¹, R.M. El-Ashwah¹ and E.E. Ali^{1,2*}

¹Mathematics Department, Faculty of Science, Mansoura University, Mansoura 33516, Egypt ²Mathematics Department, Faculty of Science, University of Hail, Kingdome of Saudi Arabia

Abstract: In this paper we introduce several new subclasses of analytic p – vhalent functions which are defined by means of a general integral operators $I_{\lambda, p}(a, b, c)$ (a, b, c) (a, b,

Keywords: Analytic function, starlike of order α , convex of order α , subordinate, Hadamard product, integral operator.

2000 Mathematics Subject Classification: 30C45

1. INTRODUCTION

Let A(p) denote the class of functions of the form:

$$f(z) = z^{p} + \sum_{k=1}^{\infty} a_{k+p} z^{k+p} \quad (p \in \mathbb{N} = \{1, 2, ...\}),$$
 (1.1)

which are analytic and p-valent in the open unit disc $U = \{z : |z| < 1\}$. A function $f(z) \in A(p)$ is said to be in the class $S_p^*(\alpha)$ of p-valently starlike of order α , if it satisfies

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha \quad (0 \le \alpha < p; z \in U). \tag{1.2}$$

We write $S_p^*(0) = S_p^*$, the class of p – valently starlike in U. A function $f(z) \in A(p)$ is said to be in the class $K_p(\alpha)$ of p – valently convex of order α , if it satisfies

$$\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \alpha \quad (0 \le \alpha < p; z \in U). \tag{1.3}$$

It follows form (1.2) and (1.3) that

$$f(z) \in K_p(\alpha) \Leftrightarrow \frac{zf'(z)}{p} \in S_p^*(\alpha) \ (0 \le \alpha < p). \ (1.4)$$

The classes $S_p^*(\alpha)$ and $K_p(\alpha)$ were studied by Owa [1] and Patil and Thakare [2].

Furthermore, a function $f(z) \in A(p)$ is said to be p-valently close-to-convex functions of order β and type γ in U, if there exists a function $g(z) \in S_p^*(\gamma)$ such that

$$\operatorname{Re}\left\{\frac{zf'(z)}{g(z)}\right\} > \beta \quad (0 \le \beta, \gamma < p; z \in U). \tag{1.5}$$

We denote by $B_p(\beta, \gamma)$, the subclass of A(p) consisting of all such functions. The class $B_p(\beta, \gamma)$ was studied by Aouf [3].

Suppose that f(z) and g(z) are analytic in U. Then we say that the function g(z) is subordinate to f(z) if there exists an analytic

function w(z) in U with $|w(z)| \le |z|$ for all $z \in U$, such that g(z) = f(w(z)), denoted $g \prec f$ of $g(z) \prec f(z)$. In case f(z) is univalent in U we have that the subordination $g(z) \prec f(z)$ is equivalent to g(0) = f(0) and $g(U) \subset f(U)$ (see [4]; see also [5],[6, p. 4]).

For the functions $f_i(z)$ (j = 1,2) defined by

$$f_j(z) = z^p + \sum_{k=1}^{\infty} a_{k+p,j} z^{k+p} \quad (p \in \mathbb{N})$$
 (1.6)

we denote the Hadamard product (or convolution) of $f_1(z)$ and $f_2(z)$ by

$$(f_1 * f_2)(z) = z^p + \sum_{k=1}^{\infty} a_{k+p,1} a_{k+p,2} z^{k+p} . \tag{1.7}$$

Let M be the class of analytic functions $\varphi(z)$ in U normalized by $\varphi(0) = 1$, and let S be the subclass of M consisting of those functions $\varphi(z)$ which are univalent in U and for which $\varphi(U)$ is convex and $\text{Re}\{\varphi(z)\} > 0 (z \in U)$.

Making use of the principle of subordination between analytic functions, we introduce the subclasses $S_p^*(\varphi)$, $K_p(\varphi)$ and $C_p(\varphi,\psi)$ of the class A(p) for φ , $\psi \in S$, which are defined by

$$S_p^*(\varphi) = \left\{ f : f \in A(p) \text{ and } \frac{zf'(z)}{pf(z)} \prec \varphi(z) \text{ in } U \right\},$$

$$K_p(\varphi) = \left\{ f : f \in A(p) \text{ and } \frac{1}{p} \left(1 + \frac{zf''(z)}{f'(z)} \right) \prec \varphi(z) \text{ in } U \right\},$$

$$C_p(\phi, \psi) = \left\{ f : f \in A(p) \text{ and } \exists h \in K_p(\phi) \text{ s.t. } \frac{f'(z)}{h'(z)} \prec \psi(z) \text{ in } U \right\}.$$

We note that for p=1, the classes $S_1^*(\varphi) = S^*(\varphi)$, $K_1(\varphi) = K(\varphi)$ and $C_1(\varphi, \psi = C(\varphi, \psi))$ are investigated by Ma and Minda [7] and Kim et al [8].

Obviously, for special choices for the functions φ and ψ involved in the above definitions, we have the following relationships:

$$S_{p}^{*}\left(\frac{1+z}{1-z}\right) = S_{p}^{*},$$

$$S_{p}^{*}\left(\frac{p+(p-2\alpha)z}{1-z}\right) = S_{p}^{*}(\alpha) \ (0 \le \alpha < p),$$

$$K_{p}\left(\frac{1+z}{1-z}\right) = K_{p} ,$$

$$K_{p}\left(\frac{p+(p-2\alpha)z}{1-z}\right) = K_{p}(\alpha) (0 \le \alpha < p),$$

$$\begin{split} &C_p\left(\frac{1+z}{1-z},\frac{1+z}{1-z}\right) = C_p \ , \\ &C_p\left(\frac{p+(p-2\gamma)z}{1-z},\frac{p+(p-2\alpha)z}{1-z}\right) = C_p(\beta,\gamma) \ (0 \leq \beta,\gamma < p). \end{split}$$

Furthermore, for the function classes $S_p^*[A, B, \alpha]$ and $K_p[A, B, \alpha]$ investigated by Aouf ([9, 10], it is easily seen that

$$S_{p}^{*}\left(\frac{\frac{1+[B+(A-B)(1-\alpha)]}{p}}{1+Bz}\right) = S_{p}^{*}[A,B,\alpha] (-1 \le B < A \le 1; 0 \le \alpha < p)$$
(see Aouf [9]),

And

$$K_{p}\left(\frac{\frac{1+[B+(A-B)(1-\frac{\alpha}{p})]}{1+Bz}}{\frac{1}{1+Bz}}\right) = K_{p}[A,B,\alpha](-1 \le B < A \le 1; 0 \le \alpha < p)$$
(see Aouf [10]).

For real or complex number a,b,c other than 0,-1,-2,..., the hypergeometric series is defined by

$${}_{2}F_{1}(a,b;c;z) = \sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}(1)_{k}} z^{k} , \qquad (1.8)$$

where $(x)_k$ is Pochhammer symbol defined by

$$(x)_{k} = \frac{\Gamma(x+k)}{\Gamma(x)} = \begin{cases} x(x+1)...(x+k-1) & (k \in \mathbb{N}; x \in \mathbb{C}), \\ 1 & (k = 0; k \in \mathbb{C} \setminus \{0\}). \end{cases}$$

We note that the series (1.8) converges absolutely for all $z \in U$ so that it represents an analytic function in U (see, for details, [11, Chapter 14]).

Now we set

$$f_{\lambda,p}(z) = \frac{z^{p}}{(1-z)^{\lambda+p}} \ (\lambda > -p) \tag{1.9}$$

and define $f_{\lambda,p}(z)$ by means of the Hadamard product

$$f_{\lambda,p}(z) * f_{\lambda,p}^{(-1)}(z) = z^p {}_2F_1(a,b;c;z) \quad (z \in U),$$
 (1.10)

This leads us to a family of linear operators

$$I_{\lambda,p}(a,b,c) = f_{\lambda,p}^{(-1)}(z) * f(z)$$

$$(a,b,c \in R \setminus Z_0^-, \ \lambda > -p, \ p \in \mathbb{N}, z \in U).$$

$$(1.11)$$

After some computations, we obtain

$$I_{\lambda,p}(a,b,c)f(z) = z^{p} + \sum_{k=1}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}(\lambda + p)_{k}} a_{k+p} z^{k+p}. \quad (1.12)$$

From (1.12), we deduce that $I_{\lambda,p}(a,\lambda+p,a) f(z) = f(z) (\lambda > -p, p \in \mathbb{N})$

and

$$I_{1,p}(p+1,p+1,p)f(z) = \frac{zf'(z)}{p},$$

$$z(I_{\lambda+1,p}(a,b,c)f(z))' = (\lambda+p)I_{\lambda,p}(a,b,c)f(z)$$

$$-\lambda I_{\lambda+1,p}(a,b,c)f(z) \quad (\lambda > -p),$$
(1.13)

and

$$z(I_{\lambda,p}(a,b,c)f(z))' = aI_{\lambda,p}(a+1,b,c)f(z) - (a-p)I_{\lambda,p}(a,b,c)f(z).$$
(1.14)

We note that;

- (i) $I_{n,p}(a,p+1,a)f(z) = I_{n+p-1}(n>-p)$, where I_{n+p-1} is the Noor integral operator of (n+p-1)-th order (see Liu and Noor [12] and Patel and Cho [13]);
- (ii) $I_{1,p}(p+1,n+p,1)f(z) = D^{n+p-1}f(z) (n > -p)$, where $D^{n+p-1}f(z)$ is the (n+p-1)-th order Ruscheweyh derivative of a function $f(z) \in A(p)$ (see Kumar and Shukla [14]);
- (iii) $I_{n,1}(a,2,a) f(z) = I_n f(z) (n > -1)$, where I_n is the Noor integral operator of n-th order (see [15]);

(iv)
$$I_{1-\lambda,p}(a, p+1, a) f(z) = \Omega_z^{(\lambda,p)} f(z)$$

$$= z^p + \sum_{k=1}^{\infty} \frac{\Gamma(k+p+1)\Gamma(p+1-\lambda)}{\Gamma(p+1)\Gamma(k+p+1-\lambda)} a_{k+p} z^{k+p}$$

$$= z^p {}_2F_1(1, p+1; p+1-\lambda; z) * f(z)$$

 $(-\infty < \lambda < p+1; z \in U).$

The operator $\Omega_z^{(\lambda,p)}$ was introduced and studied by Patel and Mishra [16]:

$$\begin{aligned} &(\mathbf{v}) \quad \frac{I_{\lambda,\,p}(\sigma+p,\lambda+p,\sigma+p+1)f(z)}{=J_{\sigma,\,p}f(z)\,(\sigma>-p)}, \end{aligned}$$

where $J_{\sigma,p}$ is the generalized Bernardi-Libera-Livingston operator defined by (3.1) (see [17]);

(vi)
$$\begin{split} I_{\lambda,1}(\mu,b,b)f(z) &= I_{\lambda,\mu}f(z) \\ (\lambda > -1, \mu > 0, \ f(z) \in A(1) = A) \ , \end{split}$$
 where $I_{\lambda,\mu}$ is the Choi-Saigo-Srivastava operator (see [17]).

We also note that:

 $I_{\lambda,p}(\mu,b,b)f(z) = I_{\lambda,\mu}^p f(z) \quad (\lambda > -p, \mu > 0, \ f(z) \in A(p)),$ where $I_{\lambda,\mu}^p$ is the generalized Choi-Saigo-Srivastava operator (see [17]) defined by

$$I_{\lambda,\mu}^{p}f(z) = z^{p} + \sum_{k=1}^{\infty} \frac{(\mu)_{k}}{(\lambda + p)_{k}} a_{k+p} z^{k+p} \quad (\lambda > -p; \mu > 0; z \in U).$$

Next, by using the general operator $I_{\lambda,p}(a,b,c)$, we introduce the following classes of analytic p – valent functions for

$$S_{\lambda,p}^*(a,b,c;\phi) = \begin{cases} f : f \in A(p) \text{ and} \\ I_{\lambda,p}(a,b,c)f(z) \in S_p^*(\phi) \end{cases},$$

$$K_{\lambda,p}(a,b,c;\phi) = \begin{cases} f : f \in A(p) \text{ and} \\ I_{\lambda,p}(a,b,c)f(z) \in K_p(\phi) \end{cases},$$

And

$$C_{\lambda, p}(a, b, c; \phi, \psi) = \begin{cases} f : f \in A(p) \text{ and} \\ I_{\lambda, p}(a, b, c) f(z) \in C_p(\phi, \psi) \end{cases}.$$

We also note that

$$f(z) \in K_{\lambda,p}(a,b,c;\varphi) \Leftrightarrow \frac{zf'(z)}{p} \in S_{\lambda,p}^*(a,b,c;\varphi). \tag{1.15}$$

In particular, we set

$$S_{n,p}^*\left(a,p+1,a;\frac{1+z}{1-z}\right) = S_{n+p-1}^* \quad (n>-p),$$

$$S_{\lambda,p}^* \left(a,b,c; \frac{1+Az}{1+Bz} \right) = S_{\lambda,p}^* \left[a,b,c;A,B \right] \ (-1 \le B < A \le 1),$$

and

$$K_{\lambda,p}\left(a,b,c;\frac{1+Az}{1+Bz}\right) = K_{\lambda,p}\left[a,b,c;A,B\right] \ (-1 \leq B < A \leq 1).$$

Inclusion properties was investigated by several authors (e.g. see [18], [19], [20] and [21]). In this paper, we investigate several inclusion properties of the classes $S_{\lambda,p}^*(a,b,c;\varphi)$,

 $K_{\lambda,p}(a,b,c;\varphi)$ and $C_{\lambda,p}(a,b,c;\varphi,\psi)$ associated with the general integral operator $I_{\lambda,p}(a,b,c)$. Some applications involving these and other families of integral operators also considered.

2 . INCLUSION PROPERTIES INVOLVING $I_{\lambda,\,p}$

To establish our main results, we shall need the following lemmas.

Lemma 1 [22]. Let h be convex univalent in U with h(0) = 1 and $\text{Re}\{\beta h(z) + \mu\} > 0$ $(\beta, \mu \in C)$.

If q(z) is analytic in U with q(0) = 1, then

$$q(z) + \frac{zq'(z)}{\beta q(z) + \gamma} \prec h(z) \quad (z \in U)$$

implies that $q(z) \prec h(z) (z \in U)$.

Lemma 2 [23]. Let h be convex in U with h(0) = 1. Suppose also that Q(z) is analytic in U with $Re\{Q(z)\} > 0$ ($z \in U$). If q(z) is analytic in U with q(0) = 1, then

$$q(z)+Q(z)zq'(z) \prec h(z) \quad (z \in U)$$

implies that $q(z) \prec h(z) (z \in U)$.

Theorem 1. Let $\lambda > -p$, $a \ge p$ and $p \in \mathbb{N}$. Then $S_{\lambda,p}^*(a+1,b,c;\phi) \subset S_{\lambda,p}^*(a,b,c;\phi)$ $\subset S_{\lambda+1,p}^*(a,b,c;\phi)$ $(\phi \in S)$.

Proof. First of all, we show that $S_{\lambda,p}^*(a+1,b,c;\phi)$ $\subset S_{\lambda,p}^*(a,b,c;\phi)$ $(\phi \in S; \lambda > -p; a \ge p; p \in N).$

Let $f(z) \in S_{\lambda_n}^*(a+1,b,c;\varphi)$ and set

$$\frac{z(I_{\lambda,p}(a,b,c)f(z))'}{pI_{\lambda,p}(a,b,c)f(z)} = q(z), \qquad (2.1)$$

where $q(z) = 1 + q_1 z + q_2 z^2 + ...$ is analytic in U and $q(z) \neq 0$ for all $z \in U$. Using the identity (1.14) in (2.1), we obtain

$$a\frac{I_{\lambda,p}(a+1,b,c)f(z)}{I_{\lambda,p}(a,b,c)f(z)} = pq(z) + a - p.$$
 (2.2)

Differentiating (2.2) logarithmically with respect to z, we have

$$\frac{z(I_{\lambda,p}(a+1,b,c)f(z))'}{I_{\lambda,p}(a+1,b,c)f(z)} = \frac{z(I_{\lambda,p}(a,b,c)f(z))'}{I_{\lambda,p}(a,b,c)f(z)} + \frac{zq'(z)}{pq(z)+a-p}$$

$$= q(z) + \frac{zq'(z)}{pq(z)+a-p}.$$
(2.3)

Since $a \ge p$, $\varphi(z) \in S$, and $f(z) \in S^*_{\lambda,p}(a+1,b,c;\varphi)$, from (2.3) we see that

$$\operatorname{Re}\left\{p\varphi(z) + a - p\right\} > 0 \quad (z \in U)$$

anc

$$q(z) + \frac{zq'(z)}{pq(z) + a - p} \prec \varphi(z) \quad (z \in U)$$

Thus, by using Lemma 1 and (2.1), we observe that $q(z) \prec \varphi(z)$ $(z \in U)$,

so that

$$f(z) \in S^*_{\lambda,p}(a,b,c;\varphi)$$
.

This implies that $S^*_{\lambda,p}(a+1,b,c;\varphi) \subset S^*_{\lambda,p}(a,b,c;\varphi)$.

To prove the second part, let $f(z) \in S^*_{\lambda,p}(a,b,c;\phi)$ $(\lambda > -p;\ a \ge p;\ p \in \mathbb{N})$ and put

$$\frac{z(I_{\lambda+1,p}(a,b,c)f(z))'}{pI_{\lambda+1,p}(a,b,c)f(z)} = g(z),$$

where $g(z) = 1 + d_1 z + d_2 z^2 + ...$ is analytic in U

and $g(z) \neq 0$ for all $z \in U$. Then, by using arguments similar to those detailed above with the identity (1.13), it follows that

$$g(z) \prec \varphi(z) \quad (z \in U)$$
,

which implies that $f(z) \in S^*_{\lambda+1,p}(a,b,c;\varphi)$. Hence we conclude that

$$S_{\lambda,p}^*(a+1,b,c;\varphi) \subset S_{\lambda,p}^*(a,b,c;\varphi) \subset S_{\lambda+1,p}^*(a,b,c;\varphi)$$
,

which completes the proof of Theorem 1.

Putting $\lambda = n$, c = a, b = p + 1 and $\varphi(z) = \frac{1+z}{1-z}$ ($z \in U$) in Theorem 1, we obtain the following corollary.

Corollary 1. Let n > -p and $p \in \mathbb{N}$. Then $S_{n+n-1}^* \subset S_{n+n}^*$.

Remark 1. Putting p=1 in Corollary 1, we obtain the result obtained by Noor [15].

Theorem 2. Let
$$\lambda > -p$$
, $a \ge p$ and $p \in \mathbb{N}$. Then $C_{\lambda,p}(a+1,b,c;\phi) \subset C_{\lambda,p}(a,b,c;\phi)$ $\subset C_{\lambda+1,p}(a,b,c;\phi)$ $(\phi \in S)$.

Proof. Applying (1.15) and Theorem 1, we observe that

$$f(z) \in C_{\lambda, p}(a+1, b, c; \phi)$$

$$\Leftrightarrow I_{\lambda, p}(a+1, b, c) f(z) \in K_{p}(\phi)$$

$$\Leftrightarrow \frac{z}{p} (I_{\lambda, p}(a+1, b, c) f(z))' \in S_{p}^{*}(\phi)$$

$$\Leftrightarrow I_{\lambda, p}(a+1, b, c) \left(\frac{zf'(z)}{p}\right) \in S_{p}^{*}(\phi)$$

$$\Leftrightarrow \frac{zf'(z)}{p} = S_{p}^{*}(\phi)$$

$$\Leftrightarrow \frac{zf'(z)}{p} \in S_{\lambda, p}^{*}(a+1, b, c; \phi)$$

$$\Rightarrow \frac{zf'(z)}{p} \in S_{\lambda, p}^{*}(a, b, c; \phi)$$

$$\Leftrightarrow I_{\lambda, p}(a, b, c) \left(\frac{zf'(z)}{p}\right) \in S_{p}^{*}(\phi)$$

$$\Leftrightarrow \frac{z}{p} \left(I_{\lambda, p}(a, b, c) f(z)\right) \in S_{p}^{*}(\phi)$$

$$\Leftrightarrow I_{\lambda, p}(a, b, c) f(z) \in K_{p}(\phi)$$

$$\Leftrightarrow f(z) \in C_{\lambda, p}(a, b, c; \phi)$$

and

$$f(z) \in K_{\lambda,p}(a,b,c;\phi)$$

$$\Leftrightarrow \frac{zf'(z)}{p} \in S_{\lambda,p}^*(a,b,c;\phi)$$

$$\Rightarrow \frac{zf'(z)}{p} \in S_{\lambda+1,p}^*(a,b,c;\phi)$$

$$\Leftrightarrow \frac{z}{p} (I_{\lambda+1,p}(a,b,c)f(z))' \in S_p^*(\phi)$$

$$\Leftrightarrow I_{\lambda+1,p}(a,b,c)f(z) \in K_p(\phi)$$

$$\Leftrightarrow f(z) \in K_{\lambda+1,p}(a,b,c;\phi),$$

which evidently proves Theorem 2. Taking

$$\varphi(z) = \frac{1 + Az}{1 + Bz} \ (-1 \le B < A \le 1; z \in U)$$

in Theorem 1 and 2, we have

Corollary 2. Let $\lambda > -p$, $a \ge p$, $p \in \mathbb{N}$ and $-1 \le B < A \le 1$.

Then

$$S_{\lambda,p}^* \left[a+1,b,c;A,B \right] \subset S_{\lambda,p}^* \left[a,b,c;A,B \right]$$
$$\subset S_{\lambda+1,p}^* \left[a,b,c;A,B \right]$$

and

$$K_{\lambda,p}[a+1,b,c;A,B] \subset K_{\lambda,p}[a,b,c;A,B]$$
$$\subset K_{\lambda+1,p}[a,b,c;A,B].$$

Theorem 3. Let $\lambda > -p$, $a \ge p$ and $p \in \mathbb{N}$. Then $C_{\lambda,p}(a+1,b,c;\phi,\psi) \subset C_{\lambda,p}(a,b,c;\phi,\psi)$ $\subset C_{\lambda+1,p}(a,b,c;\phi,\psi)$ $(\phi,\psi \in S)$.

Proof. We begin by proving that

$$C_{\lambda, p}(a+1, b, c; \phi, \psi) \subset C_{\lambda, p}(a, b, c; \phi, \psi)$$
$$(\lambda > -p; \ a \ge p; \ p \in \mathbb{N}; \phi, \psi \in S).$$

Let $f(z) \in C_{\lambda,p}(a+1,b,c;\varphi,\psi)$. Then, in view of (1.7), there exists a function $h(z) \in S_p^*(\varphi)$ such that

$$\frac{z(I_{\lambda,p}(a+1,b,c)f(z))'}{ph(z)} \prec \psi(z) \quad (z \in U).$$

Choose the function g(z) such that

 $I_{\lambda,p}(a+1,b,c)g(z) = h(z)$. Then $g(z) \in S_{\lambda,p}^*(a+1,b,c;\varphi)$

$$\frac{z(I_{\lambda,p}(a+1,b,c)f(z))'}{pI_{\lambda,p}(a+1,b,c)g(z)} \prec \psi(z) \quad (z \in U). \tag{2.4}$$

Now let

$$\frac{z(I_{\lambda,p}(a+1,b,c)f(z))'}{pI_{\lambda,p}(a+1,b,c)g(z)} = q(z),$$
(2.5)

where $q(z) = 1 + q_1 z + a_2 z^2 + ...$ is analytic in U and $q(z) \neq 0$ for all $z \in U$. Thus by using the identity (1.14), we have

$$\frac{z(I_{\lambda,p}(a+1,b,c)f(z))'}{pI_{\lambda,p}(a+1,b,c)g(z)} = \frac{I_{\lambda,p}(a+1,b,c)\left(\frac{zf'(z)}{p}\right)}{I_{\lambda,p}(a+1,b,c)g(z)} \\
= \frac{z\left[I_{\lambda,p}(a,b,c)\left(\frac{zf'(z)}{p}\right)\right]'}{I_{\lambda,p}(a,b,c)g(z)} + (a-p)\frac{I_{\lambda,p}(a,b,c)\left(\frac{zf'(z)}{p}\right)}{I_{\lambda,p}(a,b,c)g(z)} \\
= \frac{z(I_{\lambda,p}(a,b,c)g(z))'}{I_{\lambda,p}(a,b,c)g(z)'} + (a-p) \\
\frac{z(I_{\lambda,p}(a,b,c)g(z))'}{I_{\lambda,p}(a,b,c)g(z)} + (a-p)$$
(2.6)

Since $g(z) \in S_{\lambda,p}^*(a+1,b,c;\varphi) \subset S_{\lambda,p}^*(a,b,c;\varphi) (\varphi \in S)$, by Theorem 1, we set $\frac{z(I_{\lambda,p}(a,b,c)g(z))'}{pI_{\lambda,p}(a,b,c)g(z)} = G(z),$

where $G(z) \prec \varphi(z)$ ($z \in U$) for $\varphi \in S$. Then, by virture of (2.5) and (2.6), we observe that

$$I_{\lambda,p}(a,b,c)\left(\frac{zf'(z)}{p}\right) = q(z)I_{\lambda,p}(a,b,c)g(z) \qquad (2.7)$$

$$\frac{z(I_{\lambda,p}(a+1,b,c)f(z))'}{pI_{\lambda,p}(a+1,b,c)g(z)} = \frac{z\left[I_{\lambda,p}(a,b,c)\left(\frac{zf'(z)}{p}\right)\right]'}{I_{\lambda,p}(a,b,c)g(z)} + (a-p)q(z)}{pG(z) + a - p}.$$
 (2.8)

Differentiating both sides of (2.7) with respect

(2.4)
$$\frac{z\left(I_{\lambda,p}(a,b,c)\left(\frac{zf'(z)}{p}\right)\right)'}{I_{\lambda,p}(a,b,c)g(z)} = pG(z)q(z) + zq'(z).$$

Making use of (2.4), (2.8) and (2.9), we get

$$\frac{z(I_{\lambda,p}(a+1,b,c)f(z))'}{pI_{\lambda,p}(a+1,b,c)g(z)} = \frac{pG(z)q(z) + zq'(z) + (a-p)q(z)}{pG(z) + a - p}$$

$$= q(z) + \frac{zq'(z)}{pG(z) + q - p} < \psi(z) \quad (z \in U).$$
 (2.10)

Since $a \ge p$, $p \in \mathbb{N}$ and $G(z) \prec \varphi(z)$ $(z \in U)$,

$$\operatorname{Re}\left\{pG(z) + a - p\right\} > 0 \quad (z \in U).$$

Hence, by taking

$$Q(z) = \frac{1}{pG(z) + a - p}$$

in (2.10), and applying Lemma 2, we can show

$$p(z) \prec \psi(z) \quad (z \in U),$$
 so that
$$f(z) \in C_{\lambda,p}(a,b,c;\varphi,\psi) \quad (\varphi,\psi \in S).$$

For the second part, by using arguments similar to those detailed above with the identity (1.13), we obtain:

$$C_{{\scriptscriptstyle{\lambda},p}}(a,b,c;\varphi,\psi)\!\subset\!C_{{\scriptscriptstyle{\lambda+1,p}}}(a,b,c;\varphi,\psi)\ (\varphi,\psi\in S)\,.$$

The proof of Theorem 3 is thus completed.

3. INCLUSION PROPERTIES INVOLVING $J_{\sigma,p}$

In this section, we consider the generalized Bernardi-Libera-Livingston integral $J_{\sigma,p}(\sigma > -p)$ defined by (see [24],[25],and [26]).

$$J_{\sigma,p}(f)(z) = \frac{\sigma + p}{z^{\sigma}} \int_{0}^{z} t^{\sigma-1} f(t) dt \quad (f \in A(p); \sigma > -p). \quad (3.1)$$

Theorem 4. Let $\sigma > -p$, $\lambda > -p$, a > p and $p \in \mathbb{N}$. If $f(z) \in S_{\lambda, p}^*(a, b, c; \varphi) (\varphi \in S)$, then

$$J_{\sigma,p}(f)(z) \in S^*_{\lambda,p}(a,b,c;\varphi) \quad (\varphi \in S).$$

Proof . Let $f(z) \in S^*_{\lambda,p}(a,b,c;\varphi)$ for $\varphi \in S$, and set

$$\frac{z(I_{\lambda,p}(a,b,c)J_{\sigma,p}(f)(z))'}{pI_{\lambda,p}(a,b,c)J_{\sigma,p}(f)(z)} = q(z),$$
(3.2)

where $q(z) = 1 + q_1 z + q_2 z^2 + ...$ is analytic in U and $q(z) \neq 0$ for all $z \in U$. From (3.1), we obtain

$$z(I_{\lambda,p}(a,b,c)J_{\sigma,p}(f)(z))' = (\sigma+p)I_{\lambda,p}(a,b,c)f(z)$$

$$-\sigma I_{\lambda,p}(a,b,c)J_{\sigma,p}(f)(z) \quad (z \in U).$$
(3.3)

By applying (3.2) and (3.3), we obtain

$$(\sigma+p)\frac{I_{\lambda,p}(a,b,c)f(z)}{I_{\lambda,p}(a,b,c)J_{\sigma,p}(f)(z)} = pq(z) + \sigma. \quad (3.4)$$

Differentiating (3.4) logarithmically with respect to z, we obtain

$$\frac{z(I_{\lambda,p}(a,b,c)f(z))'}{I_{\lambda,p}(a,b,c)f(z)} = q(z) + \frac{zq'(z)}{pq(z) + \sigma}.$$
 (3.5)

Since $\sigma > -p$, $\varphi(z) \in S$, and $f(z) \in S^*_{\lambda,p}(\varphi)$, from (3.5), we have

$$\operatorname{Re}\left\{p\varphi(z)+\sigma\right\}>0 \text{ and } q(z)+\frac{zq'(z)}{pq(z)+\sigma}\prec\varphi(z) \ (z\in U).$$

Hence, by virbure of Lemma 1, we conclude that $q(z) \prec \varphi(z)$ $(z \in U)$,

which implies that

$$J_{\sigma,p}(f)(z) \in S^*_{\lambda,p}(a,b,c;\varphi) \quad (\varphi \in S).$$

Next, we derive an inclusion property involving $J_{\sigma,p}$, which is given by

Theorem 5. Let $\sigma > -p$, $\lambda > -p$, a > p and $p \in \mathbb{N}$. If $f(z) \in K_{\lambda,p}(a,b,c;\varphi)$ $(\varphi \in S)$, then $J_{\delta,p}(f)(z) \in K_{\lambda,p}(a,b,c;\varphi)$ $(\varphi \in S)$.

Proof. By applying Theorem 4, it follows that $f(z) \in K_{\lambda,p}(a,b,c;\varphi) \Leftrightarrow \frac{zf'(z)}{p} \in S_{\lambda,p}^*(a,b,c;\varphi)$

$$\begin{split} & \Rightarrow J_{\sigma,p} \left(\frac{zf'(z)}{p} \right) \in S_{\lambda,p}^*(a,b,c;\phi) \\ & \Leftrightarrow \frac{z}{p} \left(J_{\sigma,p}(f)(z) \right)' \in S_{\lambda,p}^*(a,b,c;\phi) \\ & \Leftrightarrow J_{\sigma,p}(f)(z) \in K_{\lambda,p}(a,b,c;\varphi) \ \, (\varphi \in S) \,, \end{split}$$

which proves Theorem 5.

Finally, we prove

Theorem 6. Let $\sigma > -p$, $\lambda > -p$, a > p and $p \in \mathbb{N}$. If $f(z) \in C_{\lambda,p}(a,b,c;\varphi,\psi)$ $(\varphi,\psi \in S)$, then $J_{\delta,p}(f)(z) \in C_{\lambda,p}(a,b,c;\varphi,\psi)$ $(\varphi,\psi \in S)$.

Proof. Let $f(z) \in C_{\lambda,p}(a,b,c;\varphi,\psi)$ for $\varphi,\psi \in S$. Then, in view of (1.7), there exists a function $g(z) \in S^*_{\lambda,p}(a,b,c;\varphi)$ such that

$$\frac{z(I_{\lambda,p}(a,b,c)f(z))'}{pI_{\lambda,p}(a,b,c)g(z)} \prec \psi(z) \quad (z \in U). \tag{3.6}$$

Thus we set

(3.5)
$$\frac{z(I_{\lambda,p}(a,b,c)J_{\sigma,p}(f)(z))'}{pI_{\lambda,p}(a,b,c)J_{\sigma,p}(f)(z)} = q(z),$$

where $q(z) = 1 + q_1 z + q_2 z^2 + ...$ is analytic in U and $q(z) \neq 0$ for all $z \in U$. Applying (3.3), we get

$$\frac{z(I_{\lambda,p}(a,b,c)f(z))'}{pI_{\lambda,p}(a,b,c)g(z)} = \frac{I_{\lambda,p}(a,b,c)\left(\frac{zf'(z)}{p}\right)}{I_{\lambda,p}(a,b,c)g(z)}$$

$$= \frac{z\left(I_{\lambda,p}(a,b,c)J_{\sigma,p}\left(\frac{zf'(z)}{p}\right)\right)' + \sigma I_{\lambda,p}(a,b,c)J_{\sigma,p}\left(\frac{zf'(z)}{p}\right)}{z\left(I_{\lambda,p}(a,b,c)J_{\sigma,p}(g)(z)\right)' + \sigma I_{\lambda,p}(a,b,c)J_{\sigma,p}(g)(z)}$$

$$= \frac{z \left(I_{\lambda,p}(a,b,c)J_{\sigma,p}\left(\frac{zf'(z)}{p}\right)\right)' + \sigma \frac{I_{\lambda,p}(a,b,c)J_{\sigma,p}\left(\frac{zf'(z)}{p}\right)}{I_{\lambda,p}(a,b,c)J_{\sigma,p}g(z)}}{\frac{z\left(I_{\lambda,p}(a,b,c)J_{\sigma,p}(g)(z)\right)'}{I_{\lambda,p}(a,b,c)J_{\sigma,p}g(z)}} + \sigma \frac{(3.7)$$

Since $g(z) \in S^*_{\lambda,p}(a,b,c;\varphi)$ $(\varphi \in S)$, by virtue of Theorem 4, we have $J_{\sigma,p}(g)(z) \in S^*_{\lambda,p}(a,b,c;\varphi)$. Let us now put

$$\frac{z(I_{\lambda,p}(a,b,c)J_{\sigma,p}(g)(z))'}{pI_{\lambda,p}(a,b,c)J_{\sigma,p}(g)(z)} = H(z),$$

where $H(z) \prec \varphi(z)$ ($z \in U$) for $\varphi \in S$. Then, by using the same techniques as in the proof of Theorem 3, we conclude from (3.6) and (3.7) that

$$\frac{z(I_{\lambda,p}(a,b,c)f(z))'}{pI_{\lambda,p}(a,b,c)g(z)} = q(z) + \frac{zq'(z)}{pH(z) + \sigma} \prec \psi(z) \ (z \in U). \ (3.8)$$

Hence, upon setting

$$Q(z) = \frac{1}{pH(z) + \sigma} \quad (z \in U)$$

in (3.8), if we apply Lemma 2, we obtain

$$q(z) \prec \psi(z) \quad (z \in U)$$
,

which yields

$$J_{\sigma,p}(f)(z) \in C_{\lambda,p}(a,b,c;\varphi,\psi) \quad (\varphi,\psi \in S).$$

The proof of Theorem 6 is thus completed.

Remark 2.

- (i) Putting $a = \mu > 0$ and b = c in the above results we obtain the corresponding results, for the operator $I_{\lambda \mu}^{p}$;
- (ii) Putting b = p+1, a = c and replacing λ by $1-\lambda$, $\infty < \lambda < p+1$ in the above results, we obtain the corresponding results for the operator $\Omega_z^{(\lambda,p)}$.

4. ACKNOWLEDGMENTS

The authors thank the referees for their valuable suggestions to improve the paper.

5. REFERENCES

- 1. Owa, S. On certain classes of p-valent functions with negative coefficients. *Simon Stevin* 59: 385-402 (1985).
- 2. Patil, D.A. & N.K. Thakare. On convex hulls and extreme points of *p* valent starlike and convex classes with applications. *Bull. Math. Soc. Sci. Math. Roumanie (N. S.)* 27 (75): 145-160 (1983).

- 3. Aouf, M.K. On a class of p-valet close -to-convex functions of order β and type α . *Internat. J. Math. Math. Sci.* 11: 259-266 (1988).
- 4. Bulboaca, T. Differential Subordinations and Superordinations Recent Results. House of Scientific Book Publ., Cluj-Napoca (2005).
- 5. Miller, S.S. & P.T. Mocanu. Differential subordinations and univalent functions. *Michigan Math. J.* 28, 157-171 (1981).
- 6. Miller, S.S. & P.T. Mocanu. Differential Subordinations: Theory and Applications, Series on Monographs and Texbooks in Pure and Applied Mathematics Vol. 225. Marcel Dekker, New York (2000).
- 7. Ma, W. & D. Minda. Uniformly convex functions. *Ann. Polon. Math.* 57 (2): 165-175 (1992).
- 8. Kim, Y.C. Choi, J.H. & T. Sugawa. Coefficient bounds and convolution for certain classes of close -to- convex functions. *Proc. Japan Acad. Ser. A Math. Sci.* 76, 95-98 (2000).
- 9. Aouf, M.K. On a class of p valent starlike functions of order α . *Internat. J. Math. Math. Sci.* 10 (4): 733-744 (1987).
- 10. Aouf, M.K. A generalization of multivalent functions with negative coefficients. *J. Korean Math. Soc.* 25: 53-66 (1988).
- Whittaker , E.T. & G.N. Wastson. A Course on Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcenclental Functions, 4th ed. (Reprinted), Cambridge Univ. Press, Cambridge (1972).
- 12. Liu, J.L. & K.I. Noor. Some properties of Noor integral operator. *J. Natur. Geom.* 21: 81-90 (2002).
- 13. Patel, J. Cho N.E. & H.M. Srivastava. Certain subclasses of multivalent functions associated with a family of linear Operator. *Math. Comput. Modelling* 43: 320-338 (2006).
- Kumar, V. & S.L. Shukla . Multivalent functions defined by Ruscheweyh derivatives. I and II. *Indian J. Pure Appl. Math.* 15 (11): 1216-1238 (1984).
- 15. Noor, K.I. On new classes of integral operators. *J. Natur. Geom.* 16: 71-80 (1985).
- Patel , J. & A.K. Mishra. On certain subclasses of multivalent functions associated with an extended fractional differintegral operator. *J. Math. Anal. Appl.* 332: 109-122 (2007).
- 17. Choi, J.H. Saigo, M. & H.M. Srivastava. Some inclusion properties of a certain family of integral operators. *J. Math. Anal. Appl.* 276: 432-445 (2002).
- 18. Aouf, M.K. Some inclusion relationships associated with Dziok Srivastava operator. *Applied Math. Computation* 216: 431-437 (2010).
- 19. Aouf, M.K. & R.M. El-Ashwah. Inclusion

- properties of certain subclass of analytic functions defined by multiplier transformations. *Ann. Univ. Mariae Curie-Sklodowska. Sect. A* 63: 29-38 (2009).
- Aouf, M.K. & T.M. Seoudy. Inclusion properties for certain K-uniformly subclasses of analytic functions associated with certain integral operator. *Bull. Math. Anal. Appl.* 3 (4): 155-162 (2011).
- 21. Srivastava, H.M. Aouf, M.K & R.M. El-Ashwah. Some inclusion relationships associated with certain class of integral operators. *Asian-European J. Math.* 3 (4): 667–684 (2010).
- 22. Eenigenburg, P. Miller, S.S. Mocanu, P.T. & M. Reade. *On a Briot-Bouqet differential subordination. General Inequalities 3, I. S. N. M.*,

- Vol. 64. Brikhauser Verlag, Basel, p. 339-348 (1983).
- 23. Miller, S.S. & P.T. Mocanu. Differential subordinations and inequalities in the complex plane. *J. Differential Equations* 67: 199-211 (1987).
- Bernardi, S.D. Convex and starlike univalent functions. *Trans. Amer. Math. Soc.* 135: 429-446 (1969).
- Libera, R.J. Some classes of regular univalent function. *Proc. Amer. Math. Soc.* 16: 755-758 (1965).
- 26. Srivastava, H.M. & S. Owa (Eds.). *Current Topics in Analytic Function Theor.* World Scientific Publishing, Hong Kong (1992).