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1. INTRODUCTION

Let A denote the class of functions of the form:

f(z)=z+ ay zX,
kZz .
(1.1)

which are analytic in the open unit disc U =
{z € C:|z| < 1}. Let @ € A be given by

@) =z+ ) ¢z~ (1.2)

Definition 1. (Hadamard product or convolution).
Given two functions f and @ in the class A,
where f(z) is given by (1.1) and @ (Z) is given by
(1.2) the Hadamard product (or convolution)
f * @ of f and @ is defined (as usual) by

Fep@ =7+ acazk =@+ N@. (3
k=2

We also denote by K the class of functions
f(2) € A that are convex in U.

Let M(f) be the subclass of A consisting of
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functions f (z) which satisfy the inequality:

Re {M} < B (z€,

@ (1.4

for some [ > 1. Also let N(f) denote the
subclasse of A consisting of functions f(z) which
satisfy the inequality:

zf" (2)
f'(@

for some 8 > 1 ( see [7], [8], [9] and [10] ). For
1<p < g, the classes M(f) and N(f) were

investigated earlier by Uralegaddi et al. [14] ( see
also [12] and [13]).
It follows from (1.4) and (1.5) that

f(z) e N(B) = zf'(2) € M(B).

For 0 <A< 1,8 >1 and for all z € U, let
T(g,A B) be the subclass of A consisting of
functions f(z) of the form (1.1) and functions

g(z) given by:
9(2) =z+ ¥, by zX (b, > 0),

Re {1 + } <B(zel), (1.5)

(1.6)

(1.7)

which satisfying the analytic criterion:
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Re{ «f 9@
A-DF * 9@ + 12 +9) @)

} <pB. (18
We note that:

(DTG 0.8) = M(B) and T2, 0,)
= N(B) (B> 1) (see [7]);

(ii) T(g,0,B) = M(g,B)(B > 1)(see [1]).
Also we note that:
_ _ zf'(2)
) {f € Ak {(1 “DF@ + Azf'(z>}
<,B(0SA<1,B>1,ZEU)};

@) T (G55 48) = T4 B)

(@@
= {e A:Re {f’(Z) m zzf”(z)}

<,8(OSA<1,B>1,ZE[U)};

(lll) T (z+i I (a)zX, /1,[3) = Tq‘s(al,/l, ﬁ)

= \

2(Ho (s, S (2))' } iy }

(1 — DHys(ay, BOf (2) + '
L \ Az(Hys(an BOf @) ) )

=%EA:Re

where [ (a;) is defined by

(a1)k-1 ....(aq)k_1
(Bik-1 -+ (B r-1(Dg-1
(ai >0,i=1,....¢;8;>0,j=1,...,8;q

<s+1,q,s € Ny, N,
=NU{0},N={12,..}),

I(a1) = (1.9)

and the operator H; (a4, B1) was introduced and
studied by Dziok and Srivastava ([4] and [5]),
which is a generalization of many other linear
operators considered earlier;

()T (Z+Z [ Mf) = Tmu, 2, 6)
k=2

2™, Of @)’
A= D" O D) + p<pp
2z(I™ (, £)f (2))’

ennel

where meN, u,£=>0, z€eU and the
operator 1™ (u, ¥) was defined by Catas et al. [3],
which is a generalization of many other linear
operators considered earlier;

(‘I))T (z+i Ck(b,u)zk, /1, ﬁ) = T(,Ll, b, A, ,B)

= {f € A:Re {(1 — Dt f(2) + 2z(" f(2))

<[3(0§/1<1,ﬁ>1,ze[U)},
Where Cy (b, p) is defined by

1+ b\*
Cutb) = (7)

(WECbEC{Z ) Zo" =Z\N), (1.10)

and the operator | g‘ was introduced by Srivastava

and Attiya [11], which is a generalization of many
other linear operators considered earlier.

Definition 2. (Subordination principle). For two
functions [ and @, analytic in U, we say that the
function f(z) is subordinate to @(z) in U,
written f (z) < @(2), if there exists a Schwarz
function w (z), which (by definition) is analytic in
U with w (0) =0 and |\w(2)| <1, such that
f(z) = e(W(2)). Indeed it is known that

f(2) < o(2) = f(0)
= ¢(0) and f(U) < ¢(U).

Furthermore, if the function ¢ is univalent in U,
then we have the following equivalence ( see [2]
and [6] ):

f(2) < 9(2) = f(0)

= @(0)and f(U) c p(U). (1.11)

Definition 3. ( Subordinating factor sequence )
[15]. 4 sequence {dy}i=1 of complex numbers is
said to be a subordinating factor sequence if,
whenever f of the form (1.1) is analytic, univalent
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and convex in U, we have

de a zX < f(z) (a, = L,z € U).
k=2

2. MAIN RESULTS

Unless otherwise mentioned, we assume
throughout this paper that 0 < A< 1, > 1,z €
U and g(z) is given by (1.7) with by, =
by (k = 2).

To prove our main result we need the following
lemmas.

Lemma 1. [15]. The sequence {dy}y=q is a
subordinating factor sequence if and only if

Re{l + Zde zk} > 0.
k=1

Now, we prove the following lemma which gives
a sufficient condition for functions belonging to

the class T (g, 4, B):

(2.1)

Lemma 2. A function f(z) of the form (1.1) is
said to be in the class T (g, 4, B) if

(1-Nk-1)
Tea) o | K- CB D) pbclad <266 -1 ()
[1+Ak—1)]

Proof. Assume that the inequality (2.2) holds true.
Then it suffices to show that

2(f + 9)'(@) .,
A=DT @ + 127 * )@
G+ 9) (@) P
A-DF 9@ +F )@ P~V

We have

<1

2(f * 9)'(2) 4
(1 =D * 9)(2) + Az(f * 9)'(2)
z(f *g)’(z)
A-DF+ 9@+ G gy@ F~D

< (1 =MDk — Dby Jay [z
T2 -1 - X, k= (2B = D1+ Ak — D] by Jay ||z

< Zke2(1 =D (k — 1) by Jay | <1
2(-1) - i, k= 2B - D[ +Ak— D]|bilay|

This completes the proof of Lemma 2.

Corollary 1. Let the function f(z) defined by
(1.1) be in the class T(g; A, B), then

ol < 28 - 1)
ST -DU-D + k= @B - DI+ Ak - DINb,
(2.3)

The result is sharp for the function

+ 26-1)
{A =Dk =D+ k- 28— D[1+A(k-D]}b

f@) =2z
2.4)

Let T*(g; A, B) denote the subclass of functions
f(z) € A whose coefficients satisfy the condition
(2.2). We note that T*(g; A, 8) € T(g,4,B).

Thereom 1. Let f (z) € T*(g; A, B). Then

[1—2+3-28—-2(28 — 1|1b,
22— 1) +[1—2+3-28—-228 - 1D|]b,}

(f *)(2) < h(2),
(2.5)
for every function h € K, and

Q2EB-D+[1-2+3-28 228 - 1DIlb}
[1—2+[3-28—-1(28 — DIIb,

Re{f(2)} > -
(2.6)

[1-A+|3-28-A(28-DIIb,
2{2(B-1)+[1-2+]3-28-2(2B-Dl]b2}
in the subordination result (2.5) is the best
estimate.

The constant factor

Proof. Let f(z) € T*(g; A, B) and suppose that
h(z) = z + Y2, hy zX € K, then

[1-2+3-28—-2(28 — D|]b,
22 =D +[1=2+3-28 228 — DIlbz}

(f+m(2)

~ [1-2+13-28-2028 — DI]b, N
T22B-D+[1-A+13-28-2(28 — 1)I]bz}<z ’ kz=2hk " Zk>.
(2.7)

Thus, by using Definition 3, the subordination
result holds true if

[1—-2+4[3—-28—-A028 — 1D|]b, ®
{Z{Z(B —D+[1-A+3-28—-A2B - DIlb} * }k=1
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is a subordinating factor sequence, with a; = 1.
In view of Lemma 1, this is equivalent to the
following inequality:

D +L—A+13=28 - 228 — D[lby **
(2.8)

- [1—-2+13-28-2(28 — 1)|]b,
Re!1+;{2(ﬁ a, z%t > 0.

Now, since

Y(k)={A-D(k-1)+]k

=28 = D1+ Ak — D]I}bk

is an increasing function of k (k = 2), we have

[1—2+13=28—228 — Db, N
RE-D+1-1+13-28-22h - 1)|]bz}k2=1“"z

Rel1+

[1-2+|3-2B8-2(28-1)|]b,
{2(B-1D)+[1-A+[3-28-A(2-1)|]b2}
T, [1-A+]3-28-A(28-1)[]boay zk}
{2(B-1)+[1-A+]3-2B8-A(28-1)|]by}

=Re{1+

+

o [1—A+13-28 - 128 — Db, )
= TRB-D+-2+13-2-2CF - Dllby)

{Z(B D+[1-2+(3 2B ll(zﬁ 1)|]b2}
k=2

—A+13 =28 — A28 — DI]byla Irk

o [1—2+ 328 - A28 - Dllb, .
- 2E-DHA-2+13-26 - 426 — DI]bz}

- 2B-DHI-2+13-2-A2F- Dbz}
DA -Nk-1
k=2
+1k— (2B — D1 + Ak — D]} by |ay [r*

[1-24+13-28-2(28 — 1)|]b,

2l RB-D+O-1+13-26— 128 - Dby}
28 - 1)

TRB-D+M-A+B-26-22B - Db

i [1—2+ 328 - 228 — Db,
- RE-D+1-21+13-28-228 - Dl]by}
26-1)

2@ -D+[1-2+13-28 A28 - Dby}
>0(zl=r<1),

where we have also made use of assertion (2.2) of
Lemma 2. Thus (2.8) holds true in U. This proves
the inequality (2.5). The inequality (2.6) follows
from (2.5) by taking the convex function

h(z)=2=z+3¥2,7X€K. 2.9)

1-z -

To prove the sharpness of the constant

[1-2+3-28-22B - DIlb,
2B -D+[1-2+13-28-22p - DIIbY

we consider the function fy(z) € T*(g;4,B)
given by

26-1) 5
[1I—A+[3-28—A28 - Db,

fo(z) =z —

Thus from (2.5), we have

[1-2+3-28—-2(28 — DI]b,
22-D+[1-2+3-28-228 - DI]

V4
bz}fO(Z) < 1—

It is easily verified that

min
|z|sr

R [1-2+4+13-28—-1(28 — 1)|]b, @
\22B-D+ -2+ 13-26—a@p - Db} ¥
1

>
This show that the constant
[1-24]3-2B-A(28-1)|]b,

2{2(B-1)+[1-2+[3-2p-2(2B-1)|1b2}
possible. This completes the proof of Theorem 1.

1s the best

Remark. (i) Taking g(z) =% and A =0 in
Lemma 2 and Theorem 1, we obtain the result
obtained by Srivastava and Attiya [10, Corollary

2] and Nishiwaki and Owa [7, Theorem 2.1];

z

(ii) Taking g(z) = REY and A = 0 in Lemma

2 and Theorem 1, we obtain the result obtained by
Srivastava and Attiya [10, Corollary 4] and
Nishiwaki and Owa [7, Corollary 2.2].

Also, we establish subordination results for the

associated subclasses, M*(g,B), Ty, pB),
TN(4B), Tqs(an, 4, B), T°(m,pu,,4,B) and
T*(u,b, A, ), whose coefficients satisfy the

condition (2.2) in the special cases as mentioned
in the introduction.

By taking A = 0 in Lemma 2 and Theorem 1, we
obtain the following corollary:

Corollary 2. Let the function f(z) defined by
(1.1) be in the class M*(g,B) and satisfy the

condition
Dtk =141k @8- D} bilay | <28 - 1. 21D)
k=2

Then for every function h € K, we have:
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[1+ 13 —2B]]b,
22(B =1 + (1 + 13 = 2BDb,}

(f *W)(2) < h(z)

(2.12)
and

28 -1 + (1 +13 - 2B)b,}
[1+ 13 —2B]]b, '

Re{f(2)} > -
(2.13)

[1+]3—-2B]]b,

2{2(B-1)+(1+I3-28Db2}
subordination result (2.12) can not be replaced by
a larger one and the function

26-1) 2
[1+13 =281,

in the

The constant factor

fo(z) =z - (2.14)

gives the sharpness.

By taking g(z) = - in Lemma 2 and Theorem
1, we obtain the following corollary:

Corollary 3. Let the function f(z) defined by
(1.1) be in the class Ty (A, B) and satisfy the
condition

C 1=k -1)+
Z{Ik—(Zﬁ—l) [1+ Ak —

k=2

MILAEECEEY
(2.15)
Then for every function h € K, we have:

[1-A+13-28-228 - 1]
2[26-1-2+13-28-228 — D]

(f *M)(2) < h(2)

(2.16)
and

[2B—-1-A+13-28—-228 — 1]
[1—-2+4+[3=-28-2028 —1)[]
(2.17)

Re{f(2)} > -

[1-A+[3-2B8-2(2B-1)]]
202B-1-2A+13—28-2A2p-DN "
the subordination result (2.16) can not be
replaced by a larger one and the function

The constant factor

B 2(6—-1) 2
[1-24+13-28—-228 —1)|]
(2.18)

fo(2) =z

gives the sharpness.

By taking g(z) = )2 in Lemma 2 and

Theorem 1, we obtain the following corollary:

Corollary 4. Let the function f(z) defined by

(1.1) be in the class Ty(A,B) and satisfy the
condition

y =Dk -1)+
Z k{lk —@B-D[1+ Ak - 1)]|} lag | < 2(8 —1).

k=2
(2.19)

Then for every function h € K, we have:

[1-2+13-28-2(28 - DI]
2[=2+13-28-2(28 - 1]

(f * W) (2) < h(z)

(2.20)
and

[6—-2+13-28-2028 — 1]
[1-2+13-28-228 - DI
(2.21)

Re{f(2)} > -

[1-2+[3-2B8-22B-D)I] .
2(p-2+13-2-2CF-DII '
subordination result (2.20) can not be replaced by
a larger one and the function

The constant factor n the

p—1 .
T=2+13-28-228-D[I°
(2.22)

fo(z) =z

gives the sharpness.

By taking b, = I« (a1) , where I (a;) defined
by (1.9), in Lemma 2 and Theorem 1, we obtain
the following corollary:

Corollary 5. Let the function f(z) defined by
(1.1) be in the class Ty s(aq, A, B) and satisfy the
condition

> ( A=Dk-1
_|_| -@2B-1) | Ne(a)lax | < 2(8 = 1).
k=2 14+ Ak —1)]
2.23)

Then for every function h € K, we have:
[1-24+13-28-228 - DI (a1)

{ 26-1) }
+[1-2+3-28 -2 - DI (a)

(f M) (2) < h(2)

(2.24)



30 Subordination Results for Certain Subclasses of Analytic Functions

and
26-1)
3-25—
Relf ()} > - i G G
V> "2 =26 228 - D@y
(2.25)
The constant factor
[1-2+[3-28-A(2B—-1D)|IT2(a1) in the

2{2(B-D+[1-2+[3-28-A2B-DII 2 (a1)}
subordination result (2.24) can not be replaced by
a larger one and the function

o 2(B-1) 2
h@ =2 - T 328 - 22 — DN @y -
(2.26)
gives the sharpness.
L utko1)

m
e ] (me Ny, u, € =

0) in Lemma 2 and Theorem 1, we obtain the
following corollary:

By taking b, = [

Corollary 6. Let the function f(z) defined by
(1.1) be in the class T*(m, u, ¥, A, B) and satisfy
the condition

o ((A-Dk-1) ), N
Z{+ k—(Gf-1) }[“%g”] @] <208~ 1).
ST+ k- 1)

(227)

Then for every function h € K, we have:

[1-24+13=-28-228-D[]E+1+w™

2+ Dm(B -1
2 {+ [1 —At |/13(z_;;zf 1_)” (¢+1+ u)m}

(f * M) (2) < h(z)

(2.28)

20+ 1D)™B-1)
{+[1—/1+|_/13(2_ﬁ251)” (€+1+u)m}

[1-2+13-28-2028 - DI+ 1+ ™
(2.29)

and

Re{f(2)} > —

The constant factor
[1-A+[3-2B-22B8-DI(E+1+w)™
22(8+1D)™M(B-1)+[1-2+]3-2-2(2B-1)|](£+1+w)™}
in the subordination result (2.28) can not be

replaced by a larger one and the function

20 -1+ D™ ,
M-2+13-28-228 - DN +1+wm°
(2.30)

fo(Z) =z

gives the sharpness.

By taking b, = Cy(b,w), where Cy (b, 1)
defined by (1.10), in Lemma 2 and Theorem 1, we
obtain the following corollary:

Corollary 7. Let the function f(z) defined by

(1.1) be in the class T*(u, b, A, B) and satisfy the
condition

> ( A=-Dk-1
Z{+ k=B -1 }Ck(b. Wlae | < 2(8 - D).
= (T + Ak = D]

(2.31)
Then for every function h € K, we have:

[1-2+13-28—-228 — DIIC;(b,

26-1)
2{+ [1 -1+ |_/13(2_[),2f1)” Cz(b, u)}

and

(f *h)(2) < h(2)

(2.32)

28 — 1)
{+ [1 -1+ |_/13(2_ﬁ2£9 1)” C, (b, u)}
12+ |13(2_ﬂzf bl €0 |
(2.33)

Re{f(2)} > -

The constant factor
[1-2+[3-28-A(2B—-1)[]C2 (bW
2{2(B-1D)+[1-2+[3-28-2(2B-1)[]C2(b,W)}
subordination result (2.32) can not be replaced by

a larger one and the function

in the

2(8 - 1) .
1= A+13 28 — A2 — DGO, 0)

fo(z2) =z~

(2.34)
gives the sharpness.
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