

Original Article

A Study on Subordination Results for Certain Subclasses of Analytic Functions defined by Convolution

M.K. Aouf*, A.A. Shamandy, A.O. Mostafa and A.K. Wagdy

Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

Abstract: In this paper, we drive several interesting subordination results of certain classes of analytic functions defined by convolution.

Keywords and phrases: Analytic function, Hadamard product, subordination, factor sequence. **2000 Mathematics Subject Classification:** 30C45

1. INTRODUCTION

Let A denote the class of functions of the form:

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k,$$
(1.1)

which are analytic in the open unit disc $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. Let $\varphi \in A$ be given by

$$\varphi(z) = z + \sum_{k=2}^{\infty} c_k z^k.$$
 (1.2)

Definition 1. (Hadamard product or convolution). Given two functions f and φ in the class A, where f(z) is given by (1.1) and $\varphi(z)$ is given by (1.2) the Hadamard product (or convolution) $f * \varphi$ of f and φ is defined (as usual) by

$$(f * \varphi)(z) = z + \sum_{k=2}^{\infty} a_k c_k z^k = (\varphi * f)(z).$$
 (1.3)

We also denote by K the class of functions $f(z) \in A$ that are convex in \mathbb{U} .

Let $M(\beta)$ be the subclass of A consisting of

functions
$$f(z)$$
 which satisfy the inequality:
 $Re\left\{\frac{zf'(z)}{f(z)}\right\} < \beta \ (z \in \mathbb{U}),$ (1.4)

for some
$$\beta > 1$$
. Also let $N(\beta)$ denote the subclasse of A consisting of functions $f(z)$ which

 $Re\left\{1 + \frac{zf''(z)}{f'(z)}\right\} < \beta \ (z \in \mathbb{U}), \tag{1.5}$

for some
$$\beta > 1$$
 (see [7], [8], [9] and [10]). For

for some $\beta > 1$ (see [7], [8], [9] and [10]). For $1 < \beta \le \frac{4}{3}$, the classes $M(\beta)$ and $N(\beta)$ were investigated earlier by Uralegaddi et al. [14] (see also [12] and [13]).

It follows from (1.4) and (1.5) that

satisfy the inequality:

$$f(z) \in N(\beta) \Leftrightarrow zf'(z) \in M(\beta).$$
 (1.6)

For $0 \le \lambda < 1, \beta > 1$ and for all $z \in \mathbb{U}$, let $T(g,\lambda,\beta)$ be the subclass of A consisting of functions f(z) of the form (1.1) and functions g(z) given by:

$$g(z) = z + \sum_{k=2}^{\infty} b_k z^k (b_k > 0),$$
 (1.7)

which satisfying the analytic criterion:

$$Re\left\{\frac{z(f*g)'(z)}{(1-\lambda)(f*g)(z)+\lambda z(f*g)'(z)}\right\} < \beta. \quad (1.8)$$

We note that:

(i)
$$T(\frac{z}{1-z}, 0, \beta) = M(\beta)$$
 and $T(\frac{z}{(1-z)^2}, 0, \beta)$
= $N(\beta)$ $(\beta > 1)$ (see [7]);

(ii)
$$T(g, 0, \beta) = M(g, \beta)(\beta > 1)$$
 (see [1]).

Also we note that:

$$\begin{split} &(i) \ T\left(\frac{z}{1-z},\lambda,\beta\right) = T_M(\lambda,\beta) \\ &= \left\{ f \in A : Re\left\{\frac{zf'(z)}{(1-\lambda)f(z) + \lambda zf'(z)}\right\} \\ &< \beta \ (0 \le \lambda < 1,\beta > 1,z \in \mathbb{U}) \right\}; \end{split}$$

$$(ii) T\left(\frac{z}{(1-z)^2}, \lambda, \beta\right) = T_N(\lambda, \beta)$$

$$= \left\{ \in A: Re\left\{ \frac{f'(z) + zf''(z)}{f'(z) + \lambda zf''(z)} \right\} \right.$$

$$< \beta \left(0 \le \lambda < 1, \beta > 1, z \in \mathbb{U} \right) \right\};$$

$$(iii) T\left(z + \sum_{k=2}^{\infty} \Gamma_{k}(\alpha_{1})z^{k}, \lambda, \beta\right) = T_{q,s}(\alpha_{1}, \lambda, \beta)$$

$$= \left\{ \in A : Re\left\{ \frac{z(H_{q,s}(\alpha_{1}, \beta_{1})f(z))'}{(1 - \lambda)H_{q,s}(\alpha_{1}, \beta_{1})f(z)'} + \frac{z(H_{q,s}(\alpha_{1}, \beta_{1})f(z))'}{\lambda z(H_{q,s}(\alpha_{1}, \beta_{1})f(z))'} \right\} < \beta \right\},$$

where $\Gamma_k(\alpha_1)$ is defined by

$$\Gamma_{k}(\alpha_{1}) = \frac{(\alpha_{1})_{k-1} \dots (\alpha_{q})_{k-1}}{(\beta_{1})_{k-1} \dots (\beta_{s})_{k-1} (1)_{k-1}} \quad (1.9)$$

$$(\alpha_i > 0, i = 1, ..., q; \beta_j > 0, j = 1, ..., s; q$$

$$\leq s + 1, q, s \in \mathbb{N}_0, \mathbb{N}_0$$

$$= \mathbb{N} \cup \{0\}, \mathbb{N} = \{1, 2, ...\}),$$

and the operator $H_{q,s}(\alpha_1, \beta_1)$ was introduced and studied by Dziok and Srivastava ([4] and [5]), which is a generalization of many other linear operators considered earlier;

$$(iv)T\left(z+\sum_{k=2}^{\infty}\left[\frac{\ell+1+\mu(k-1)}{\ell+1}\right]^{m}z^{k},\lambda,\beta\right)=T(m,\mu,\ell,\lambda,\beta)$$

$$=\left\{\in A: Re\left\{\frac{z(I^{m}(\mu,\ell)f(z))'}{(1-\lambda)I^{m}(\mu,\ell)f(z)+}\right\}<\beta\right\},$$

$$\lambda z(I^{m}(\mu,\ell)f(z))'$$

where $m \in \mathbb{N}_0$, $\mu, \ell \ge 0$, $z \in \mathbb{U}$ and the operator $I^m(\mu, \ell)$ was defined by Cătaş et al. [3], which is a generalization of many other linear operators considered earlier;

$$(v)T\left(z+\sum_{k=2}^{\infty}c_{k}(b,\mu)z^{k},\lambda,\beta\right) = T(\mu,b,\lambda,\beta)$$

$$= \left\{f \in A: Re\left\{\frac{z(J_{b}^{\mu}f(z))'}{(1-\lambda)J_{b}^{\mu}f(z) + \lambda z(J_{b}^{\mu}f(z))'}\right\}$$

$$< \beta \ (0 \le \lambda < 1, \beta > 1, z \in \mathbb{U})\right\},$$

Where $C_k(b, \mu)$ is defined by

$$C_{k}(b,\mu) = \left(\frac{1+b}{k+b}\right)^{\mu}$$

$$(\mu \in \mathbb{C}, b \in \mathbb{C} \{\mathbb{Z}_{0}^{-}\}, \mathbb{Z}_{0}^{-} = \mathbb{Z} \backslash \mathbb{N}), \quad (1.10)$$

and the operator J_b^{μ} was introduced by Srivastava and Attiya [11], which is a generalization of many other linear operators considered earlier.

Definition 2. (Subordination principle). For two functions f and φ , analytic in \mathbb{U} , we say that the function f(z) is subordinate to $\varphi(z)$ in \mathbb{U} , written $f(z) \prec \varphi(z)$, if there exists a Schwarz function w(z), which (by definition) is analytic in \mathbb{U} with w(0) = 0 and |w(z)| < 1, such that $f(z) = \varphi(w(z))$. Indeed it is known that

$$f(z) \lt \varphi(z) \Rightarrow f(0)$$

= $\varphi(0)$ and $f(\mathbb{U}) \subset \varphi(\mathbb{U})$.

Furthermore, if the function φ is univalent in \mathbb{U} , then we have the following equivalence (see [2] and [6]):

$$f(z) < \varphi(z) \Leftrightarrow f(0)$$

= $\varphi(0)$ and $f(\mathbb{U}) \subset \varphi(\mathbb{U})$. (1.11)

Definition 3. (Subordinating factor sequence) [15]. A sequence $\{d_k\}_{k=1}^{\infty}$ of complex numbers is said to be a subordinating factor sequence if, whenever f of the form (1.1) is analytic, univalent

and convex in \mathbb{U} , we have

$$\sum_{k=2}^{\infty} d_k \; a_k \, z^k \prec f(z) \; (a_1 \, = 1; z \in \mathbb{U} \,).$$

2. MAIN RESULTS

Unless otherwise mentioned, we assume throughout this paper that $0 \le \lambda < 1, \beta > 1, z \in \mathbb{U}$ and g(z) is given by (1.7) with $b_{k+1} \ge b_k$ $(k \ge 2)$.

To prove our main result we need the following lemmas.

Lemma 1. [15]. The sequence $\{d_k\}_{k=1}^{\infty}$ is a subordinating factor sequence if and only if

$$Re\left\{1 + 2\sum_{k=1}^{\infty} d_k \ z^k\right\} > 0.$$
 (2.1)

Now, we prove the following lemma which gives a sufficient condition for functions belonging to the class $T(g, \lambda, \beta)$:

Lemma 2. A function f(z) of the form (1.1) is said to be in the class $T(q, \lambda, \beta)$ if

$$\sum_{k=2}^{\infty} \left\{ \left. \begin{array}{l} (1-\lambda)(k-1) \\ + \left| \begin{array}{l} k - (2\beta - 1) \\ [1 + \lambda(k-1)] \end{array} \right| \right\} b_k |a_k| \le 2(\beta - 1). \quad (2.2)$$

Proof. Assume that the inequality (2.2) holds true. Then it suffices to show that

$$\left| \frac{\frac{z(f * g)'(z)}{(1 - \lambda)(f * g)(z) + \lambda z(f * g)'(z)} - 1}{\frac{z(f * g)'(z)}{(1 - \lambda)(f * g)(z) + \lambda z(f * g)'(z)} - (2\beta - 1)} \right| < 1.$$

We have

$$\frac{\frac{z(f * g)'(z)}{(1 - \lambda)(f * g)(z) + \lambda z(f * g)'(z)} - 1}{\frac{z(f * g)'(z)}{(1 - \lambda)(f * g)(z) + \lambda z(f * g)'(z)} - (2\beta - 1)}$$

$$\leq \frac{\sum_{k=2}^{\infty}(1-\lambda)(k-1)\,b_k\,|a_k\,||z|^{k-1}}{2(\beta-1)-\sum_{k=2}^{\infty}|k-(2\beta-1)[1+\lambda(k-1)]|\,b_k\,|a_k\,||z|^{k-1}}$$

$$< \frac{\sum_{k=2}^{\infty} (1-\lambda)(k-1) \, b_k \, |a_k|}{2(\beta-1) - \sum_{k=2}^{\infty} |k-(2\beta-1)[1+\lambda(k-1)]| \, b_k \, |a_k|} < 1.$$

This completes the proof of Lemma 2.

Corollary 1. Let the function f(z) defined by (1.1) be in the class $T(q; \lambda, \beta)$, then

$$|a_k| \le \frac{2(\beta - 1)}{\{(1 - \lambda)(k - 1) + |k - (2\beta - 1)[1 + \lambda(k - 1)]|\}b_k}.$$
(2.3)

The result is sharp for the function

$$f(z) = z + \frac{2(\beta - 1)}{\{(1 - \lambda)(k - 1) + |k - (2\beta - 1)[1 + \lambda(k - 1)]|\}b_k}.$$
(2.4)

Let $T^*(g; \lambda, \beta)$ denote the subclass of functions $f(z) \in A$ whose coefficients satisfy the condition (2.2). We note that $T^*(g; \lambda, \beta) \subseteq T(g, \lambda, \beta)$.

Thereom 1. Let $f(z) \in T^*(g; \lambda, \beta)$. Then

$$\frac{[1-\lambda+|3-2\beta-\lambda(2\beta-1)|]b_2}{2\{2(\beta-1)+[1-\lambda+|3-2\beta-\lambda(2\beta-1)|]b_2\}}(f*h)(z) < h(z),$$
 (2.5)

for every function $h \in K$, and

$$Re\{f(z)\} > -\frac{\{2(\beta-1) + [1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2\}}{[1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2}.$$
(2.6)

The constant factor $\frac{[1-\lambda+|3-2\beta-\lambda(2\beta-1)|]b_2}{2\{2(\beta-1)+[1-\lambda+|3-2\beta-\lambda(2\beta-1)|]b_2\}}$ in the subordination result (2.5) is the best estimate.

Proof. Let $f(z) \in T^*(g; \lambda, \beta)$ and suppose that $h(z) = z + \sum_{k=2}^{\infty} h_k z^k \in K$, then

$$\frac{[1-\lambda+|3-2\beta-\lambda(2\beta-1)|]b_2}{2\{2(\beta-1)+[1-\lambda+|3-2\beta-\lambda(2\beta-1)|]b_2\}}(f*h)(z)$$

$$=\frac{[1-\lambda+|3-2\beta-\lambda(2\beta-1)|]b_2}{2\{2(\beta-1)+[1-\lambda+|3-2\beta-\lambda(2\beta-1)|]b_2\}}\left(z+\sum_{k=2}^{\infty}\mathbf{h}_k\;a_k\;z^k\right). \tag{2.7}$$

Thus, by using Definition 3, the subordination result holds true if

$$\left\{\frac{[1-\lambda+|3-2\beta-\lambda(2\beta-1)|]b_2}{2\{2(\beta-1)+[1-\lambda+|3-2\beta-\lambda(2\beta-1)|]b_2\}}a_k\right\}_{k=1}^{\infty}$$

is a subordinating factor sequence, with $a_1 = 1$. In view of Lemma 1, this is equivalent to the following inequality:

$$Re\left\{1+\sum_{k=1}^{\infty}\frac{[1-\lambda+|3-2\beta-\lambda(2\beta-1)|]b_2}{\{2(\beta-1)+[1-\lambda+|3-2\beta-\lambda(2\beta-1)|]b_2\}}a_k\,z^k\right\}>0. \tag{2.8}$$

Now, since

$$\Psi(k) = \{(1 - \lambda)(k - 1) + |k - (2\beta - 1)[1 + \lambda(k - 1)]\}b_k$$

is an increasing function of k ($k \ge 2$), we have

$$\begin{split} Re\left\{1 + \frac{[1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2}{\{2(\beta-1) + [1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2\}} \sum_{k=1}^{\infty} a_k \, z^k\right\} \\ &= Re\left\{1 + \frac{[1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2}{\{2(\beta-1) + [1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2\}} Z \\ &+ \frac{\sum_{k=2}^{\infty} [1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2}{\{2(\beta-1) + [1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2\}} Z \\ &+ \frac{[1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2 \, x_k \, z^k}{\{2(\beta-1) + [1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2\}} Z \\ &\geq 1 - \frac{[1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2}{\{2(\beta-1) + [1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2\}} r \\ &- \frac{1}{\{2(\beta-1) + [1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2\}} \sum_{k=2}^{\infty} [1 \\ &- \lambda + |3-2\beta-\lambda(2\beta-1)|]b_2 \} r \\ &- \frac{[1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2}{\{2(\beta-1) + [1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2\}} r \\ &- \frac{[2(\beta-1) + [1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2]}{\{2(\beta-1) + [1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2\}} r \\ &- \frac{[1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2}{\{2(\beta-1) + [1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2\}} r \\ &- \frac{[1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2}{\{2(\beta-1) + [1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2\}} r \\ &- \frac{[1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2}{\{2(\beta-1) + [1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2\}} r \\ &- \frac{[1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2}{\{2(\beta-1) + [1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2\}} r \\ &- \frac{[1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2}{\{2(\beta-1) + [1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2\}} r \\ &- \frac{[1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2}{\{2(\beta-1) + [1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2\}} r \\ &- \frac{[1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2}{\{2(\beta-1) + [1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2\}} r \\ &- \frac{[1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2}{\{2(\beta-1) + [1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2\}} r \\ &- \frac{[1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2}{\{2(\beta-1) + [1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2\}} r \\ &- \frac{[1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2}{\{2(\beta-1) + [1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2\}} r \\ &- \frac{[1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2}{\{2(\beta-1) + [1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2\}} r \\ &- \frac{[1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2}{\{2(\beta-1) + [1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2\}} r \\ &- \frac{[1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2}{\{2(\beta-1) + [1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2\}} r \\ &- \frac{[1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2}{\{2(\beta-1) + [1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2\}} r \\ &- \frac{[1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2}{\{2(\beta-1) + [1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2\}} r \\ &- \frac{[1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2}{\{2(\beta-1) + [1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2\}} r \\ &- \frac{[1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2}{\{2(\beta-1) + [1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2\}} r \\ &- \frac{[1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2}{\{2(\beta-1) + [1-\lambda + |3-2\beta-\lambda(2\beta-1)|]b_2\}} r \\ &- \frac{[1-\lambda + |3-2\beta-\lambda(2\beta-$$

$$\geq 1 - \frac{[1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]b_2}{\{2(\beta - 1) + [1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]b_2\}}r$$

$$- \frac{2(\beta - 1)}{\{2(\beta - 1) + [1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]b_2\}}r$$

$$\geq 1 - \frac{[1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]b_2}{\{2(\beta - 1) + [1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]b_2\}}$$

$$- \frac{2(\beta - 1)}{\{2(\beta - 1) + [1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]b_2\}}$$

$$\geq 0 (|z| = r < 1)$$

where we have also made use of assertion (2.2) of Lemma 2. Thus (2.8) holds true in \mathbb{U} . This proves the inequality (2.5). The inequality (2.6) follows from (2.5) by taking the convex function

$$h(z) = \frac{z}{1-z} = z + \sum_{k=2}^{\infty} z^k \in K.$$
 (2.9)

To prove the sharpness of the constant

$$\frac{[1-\lambda+|3-2\beta-\lambda(2\beta-1)|]b_2}{2\{2(\beta-1)+[1-\lambda+|3-2\beta-\lambda(2\beta-1)|]b_2\}'}$$

we consider the function $f_0(z) \in T^*(g; \lambda, \beta)$ given by

$$f_0(z) = z - \frac{2(\beta - 1)}{[1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]b_2}z^2.$$

Thus from (2.5), we have

$$\frac{[1-\lambda+|3-2\beta-\lambda(2\beta-1)|]b_2}{2\{2(\beta-1)+[1-\lambda+|3-2\beta-\lambda(2\beta-1)|]b_2\}}f_0(z)<\frac{z}{1-z}$$

It is easily verified that

$$\begin{split} \min_{|z| \le r} \left\{ & Re\left(\frac{[1-\lambda + |3-2\beta - \lambda(2\beta-1)|]b_2}{2\{2(\beta-1) + [1-\lambda + |3-2\beta - \lambda(2\beta-1)|]b_2\}}f_0(z)\right) \right\} \\ & = -\frac{1}{2}. \end{split}$$

This show that the constant

$$\frac{[1-\lambda+|3-2\beta-\lambda(2\beta-1)|]b_2}{2\{2(\beta-1)+[1-\lambda+|3-2\beta-\lambda(2\beta-1)|]b_2\}} \text{ is the best possible. This completes the proof of Theorem 1.}$$

Remark. (i) Taking $g(z) = \frac{z}{1-z}$ and $\lambda = 0$ in Lemma 2 and Theorem 1, we obtain the result obtained by Srivastava and Attiya [10, Corollary 2] and Nishiwaki and Owa [7, Theorem 2.1];

(ii) Taking $g(z) = \frac{z}{(1-z)^2}$ and $\lambda = 0$ in Lemma 2 and Theorem 1, we obtain the result obtained by Srivastava and Attiya [10, Corollary 4] and Nishiwaki and Owa [7, Corollary 2.2].

Also, we establish subordination results for the associated subclasses, $M^*(g,\beta)$, $T_M^*(\lambda,\beta)$, $T_N^*(\lambda,\beta)$, $T_{q,s}^*(\alpha_1,\lambda,\beta)$, $T^*(m,\mu,\ell,\lambda,\beta)$ and $T^*(\mu,b,\lambda,\beta)$, whose coefficients satisfy the condition (2.2) in the special cases as mentioned in the introduction.

By taking $\lambda = 0$ in Lemma 2 and Theorem 1, we obtain the following corollary:

Corollary 2. Let the function f(z) defined by (1.1) be in the class $M^*(g,\beta)$ and satisfy the condition

(2.9)
$$\sum_{k=2}^{\infty} \{k-1+|k-(2\beta-1)|\} b_k |a_k| \le 2(\beta-1). \quad (2.11)$$

Then for every function $h \in K$, we have:

$$\frac{[1+|3-2\beta|]b_2}{2\{2(\beta-1)+(1+|3-2\beta|)b_2\}}(f*h)(z) < h(z)$$

$$(2.12)$$

and

$$Re\{f(z)\} > -\frac{\{2(\beta-1)+(1+|3-2\beta|)b_2\}}{[1+|3-2\beta|]b_2}. \tag{2.13}$$

The constant factor $\frac{[1+|3-2\beta|]b_2}{2\{2(\beta-1)+(1+|3-2\beta|)b_2\}}$ in the subordination result (2.12) can not be replaced by a larger one and the function

$$f_0(z) = z - \frac{2(\beta - 1)}{[1 + |3 - 2\beta|]b_2}z^2 \qquad (2.14)$$

gives the sharpness.

By taking $g(z) = \frac{z}{1-z}$ in Lemma 2 and Theorem 1, we obtain the following corollary:

Corollary 3. Let the function f(z) defined by (1.1) be in the class $T_M^*(\lambda, \beta)$ and satisfy the condition

$$\sum_{k=2}^{\infty} \left\{ |(1-\lambda)(k-1) + |(1-\lambda)(k-1)| \right\} |a_k| \le 2(\beta - 1).$$
(2.15)

Then for every function $h \in K$, we have:

$$\frac{[1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]}{2[2\beta - 1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]} (f * h)(z) < h(z)$$
(2.16)

and

$$Re\{f(z)\} > -\frac{[2\beta - 1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]}{[1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]}.$$
(2.17)

The constant factor $\frac{[1-\lambda+|3-2\beta-\lambda(2\beta-1)|]}{2[2\beta-1-\lambda+|3-2\beta-\lambda(2\beta-1)|]}$ in the subordination result (2.16) can not be replaced by a larger one and the function

$$f_0(z) = z - \frac{2(\beta - 1)}{[1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]} z^2$$
(2.18)

gives the sharpness.

By taking $g(z) = \frac{z}{(1-z)^2}$ in Lemma 2 and Theorem 1, we obtain the following corollary:

Corollary 4. Let the function f(z) defined by (1.1) be in the class $T_N^*(\lambda, \beta)$ and satisfy the condition

$$\sum_{k=2}^{\infty} k \left\{ |k - (2\beta - 1)[1 + \lambda(k-1)]| \right\} |a_k| \le 2(\beta - 1).$$
(2.19)

Then for every function $h \in K$, we have:

$$\frac{[1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]}{2[\beta - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]} (f * h)(z) < h(z)$$
(2.20)

and

$$Re\{f(z)\} > -\frac{[\beta - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]}{[1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]}.$$
(2.21)

The constant factor $\frac{[1-\lambda+|3-2\beta-\lambda(2\beta-1)|]}{2[\beta-\lambda+|3-2\beta-\lambda(2\beta-1)|]}$ in the subordination result (2.20) can not be replaced by a larger one and the function

$$f_0(z) = z - \frac{\beta - 1}{[1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]} z^2$$
(2.22)

gives the sharpness.

By taking $b_k = \Gamma_k(\alpha_1)$, where $\Gamma_k(\alpha_1)$ defined by (1.9), in Lemma 2 and Theorem 1, we obtain the following corollary:

Corollary 5. Let the function f(z) defined by (1.1) be in the class $T_{q,s}^*(\alpha_1, \lambda, \beta)$ and satisfy the condition

$$\sum_{k=2}^{\infty} \left\{ | (1-\lambda)(k-1) + | k - (2\beta - 1) | | \Gamma_{k}(\alpha_{1})| a_{k} | \le 2(\beta - 1). \right\}$$

$$(2.23)$$

Then for every function $h \in K$, we have:

$$\frac{[1-\lambda+|3-2\beta-\lambda(2\beta-1)|]\Gamma_{2}(\alpha_{1})}{2\left\{+[1-\lambda+|3-2\beta-\lambda(2\beta-1)|]\Gamma_{2}(\alpha_{1})\right\}}(f*h)(z) < h(z)$$

$$(2.24)$$

and

$$Re\{f(z)\} > -\frac{\begin{cases} 2(\beta - 1) \\ +\left[1 - \lambda + \left|\frac{3 - 2\beta - 1}{\lambda(2\beta - 1)}\right|\right]\Gamma_{2}(\alpha_{1}) \end{cases}}{[1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]\Gamma_{2}(\alpha_{1})}.$$
(2.25)

The constant factor

$$\frac{[1-\lambda+|3^{-2}\beta-\lambda(2\beta-1)|]\Gamma_2(\alpha_1)}{2\{2(\beta-1)+[1-\lambda+|3-2\beta-\lambda(2\beta-1)|]\Gamma_2(\alpha_1)\}} \ in \ the \\ subordination \ result \ (2.24) \ can \ not \ be \ replaced \ by \\ a \ larger \ one \ and \ the \ function$$

$$f_0(z) = z - \frac{2(\beta - 1)}{[1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]\Gamma_2(\alpha_1)} z^2$$
(2.26)

gives the sharpness.

By taking $b_k = \left[\frac{\ell+1+\mu(k-1)}{\ell+1}\right]^m (m \in \mathbb{N}_0, \mu, \ell \ge 1)$ 0) in Lemma 2 and Theorem 1, we obtain the following corollary:

Corollary 6. Let the function f(z) defined by (1.1) be in the class $T^*(m, \mu, \ell, \lambda, \beta)$ and satisfy the condition

$$\sum_{k=2}^{\infty} \left\{ \begin{pmatrix} (1-\lambda)(k-1) \\ + \left| k - (2\beta - 1) \\ [1+\lambda(k-1)] \right| \right\} \left[\frac{\ell + 1 + \mu(k-1)}{\ell + 1} \right]^m |a_k| \le 2(\beta - 1).$$

$$(2.27)$$

Then for every function $h \in K$, we have:

$$\frac{[1-\lambda+|3-2\beta-\lambda(2\beta-1)|](\ell+1+\mu)^{m}}{2\left\{+\left[1-\lambda+\left|\frac{3-2\beta-1}{\lambda(2\beta-1)}\right|\right](\ell+1+\mu)^{m}\right\}}(f*h)(z) < h(z)$$

and

$$Re\{f(z)\} > -\frac{\begin{cases} 2(\ell+1)^{m}(\beta-1) \\ +\left[1-\lambda+\left|\frac{3-2\beta}{-\lambda(2\beta-1)}\right|\right](\ell+1+\mu)^{m} \end{cases}}{[1-\lambda+|3-2\beta-\lambda(2\beta-1)|](\ell+1+\mu)^{m}}. \tag{2.29}$$

The constant factor

$$\frac{[1-\lambda+|3-2\beta-\lambda(2\beta-1)|](\ell+1+\mu)^{m}}{2\{2(\ell+1)^{m}(\beta-1)+[1-\lambda+|3-2\beta-\lambda(2\beta-1)|](\ell+1+\mu)^{m}\}}$$

in the subordination result (2.28) can not be replaced by a larger one and the function

$$f_0(z) = z - \frac{2(\beta - 1)(\ell + 1)^{\mathrm{m}}}{[1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|](\ell + 1 + \mu)^{\mathrm{m}}} z^2$$
(2.30)

gives the sharpness.

taking $b_k = C_k(b, \mu)$, where $C_k(b, \mu)$ defined by (1.10), in Lemma 2 and Theorem 1, we obtain the following corollary:

Corollary 7. Let the function f(z) defined by (1.1) be in the class $T^*(\mu, b, \lambda, \beta)$ and satisfy the condition

$$\sum_{k=2}^{\infty} \left\{ (1-\lambda)(k-1) + \left| k - (2\beta - 1) \right| \right\} C_{k}(b,\mu) |a_{k}| \le 2(\beta - 1).$$
(2.31)

Then for every function $h \in K$, we have:

$$\frac{[1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]C_{2}(b, \mu)}{2 \left\{ + \left[1 - \lambda + \left| \frac{3 - 2\beta}{-\lambda(2\beta - 1)} \right| \right] C_{2}(b, \mu) \right\}} (f * h)(z) < h(z)$$

$$(2.32)$$

and

$$Re\{f(z)\} > -\frac{\left\{ 2(\beta-1) \atop \left. + \left[1 - \lambda + \left| \begin{matrix} 3 - 2\beta \\ -\lambda(2\beta-1) \end{matrix} \right| \right] C_2(b,\mu) \right\}}{\left[1 - \lambda + \left| \begin{matrix} 3 - 2\beta \\ \lambda(2\beta-1) \end{matrix} \right| \right] C_2(b,\mu)}. \tag{2.33}$$

The constant factor
$$\frac{[1-\lambda+|3-2\beta-\lambda(2\beta-1)|]C_2(b,\mu)}{2\{2(\beta-1)+[1-\lambda+|3-2\beta-\lambda(2\beta-1)|]C_2(b,\mu)\}} \ in \ the \\ subordination \ result \ (2.32) \ can \ not \ be \ replaced \ by \\ a \ larger \ one \ and \ the \ function$$

$$f_0(z) = z - \frac{2(\beta - 1)}{[1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]C_2(b, \mu)} z^2$$
(2.34)

gives the sharpness.

ACKNOWLEDGEMENTS

The authors thank the anonymous referees of the paper for their helpful suggestions.

REFERENCES

Aouf, M.K., A.A.. Shamandy, A.O. Mostafa & E.A. Adwan. Subordination results for certain class of analytic functions defined by convolution.

- Rend. del Circolo Math. di Palermo (in press).
- 2. Bulboaca, T. Differential Subordinations and Superordinations, Recent Results. House of Scientific Book Publ., Cluj-Napoca (2005).
- 3. A Cătaş, G.I. Oros & G. Oros. Differential subordinations associated with multiplier transformations. *Abstract Appl. Anal.* ID845724: 1-11 (2008).
- 4. Dziok, J. & H.M. Srivastava. Classes of analytic functions with the generalized hypergeometric function. *Appl. Math. Comput.* 103: 1-13 (1999).
- 5. Dziok, J. & , H.M. Srivastava. Certain subclasses of analytic functions associated with the generalized hypergeometric function. *Integral Transform. Spec. Funct.* 14: 7-18 (2003).
- 6. Miller, S.S. & P.T. Mocanu. *Differential Subordinations Theory and Applications*. In: Series on Monographs and Textbooks in Pure and Applied Mathematics 255. Marcel Dekker, New York (2000).
- 7. Nishiwaki, J. & S Owa.. Coefficient inequalities for certain analytic functions, *Internat. J. Math. Math. Sci.* 29 (5): 285-290 (2002).
- 8. Owa, S. & J. Nishiwaki. Coeffocient estimates for certain classes of analytic functions. *J. Inequal.*

- Pure Appl. Math. 3 (5), Art. 72: 1-12 (2002).
- 9. Owa, S. & H.M. Srivastava. Some generalized convolution properties associated with certain subclasses of analytic functions. *J. Inequal. Pure Appl. Math.* 3 (3), Art. 42: 1-27 (2002).
- Srivastava, H.M. & A.A Attiya. Some subordination results associated with certain subclasses of analytic functions. *J. Inequal. Pure Appl. Math.* 5 (4), Art. 82: 1-14 (2004).
- 11. Srivastava, H.M. & A.A Attiya.. An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination. *Integral Transform. Spec. Funct.* 18: 207-216 (2007).
- 12. Srivastava, H.M. & S. Owa. *Current Topics in Analytic Function Theory*. World Scientific Publishing Company, Singapore (1992).
- 13. Uralegaddi, BA. & A.R. Desa. Convolutions of univalent functions with positive coefficients. *Tamkang J. Math.* 29: 279-285 (1998).
- 14. Uralegaddi, B.A., M.D. Ganigi & S.M Sarangi. Univalent functions with positive coefficients. *Tamkang J. Math.* 25: 225-230 (1994).
- 15. Wilf, S. Subordinating factor sequence for convex maps of the unit circle. *Proc. Amer. Math. Soc.* 12: 689-693 (1961).