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Abstract: In this paper, a novel Hybrid Linear and Nonlinear (HLN) technique of modeling and control 

design for two-time-scale nuclear power plant has been devised in LabVIEW environment. A higher order 

linear model for two-time-scale nuclear power plant power control is developed based on Deterministic-

Stochastic Subspace Identification via Principal Component Analysis (DSSIPCA) technique. The eighth 

order linear model is identified using innovative time domain plant data. The eighth order model is 

decoupled into two modes of dynamics using Nonlinear Recurrent Artificial Neural Network (NRANN). 

The first reduced order model is a second order model capturing slow dynamics of plant while second 

reduced order model is a sixth order model capturing fast dynamics of plant. The slow dynamics model is 

so decoupled that it mimics the original higher order model of nuclear power plant. A sliding surface is 

designed in state space for slow dynamics model and full order model. Based on sliding surface, a Robust 

Discrete Nonlinear Controller (RDNC) is designed for decoupled two-time-scale nuclear power plant 

model in Triangular Block Structure (TBS) form using Sliding Mode Control (SMC) technique. The 

design, optimization, testing, validation and analysis work is carried out in most modern graphical 

programming environment LabVIEW 7.0. The performance of proposed of HLN technique is tested in 

reference tracking mode for an operating unit of pressurized heavy water reactor based nuclear power plant 

in Pakistan and found satisfactory and within design limits.  
 

Keywords:   System identification, principal component analysis, recurrent neural network, sliding mode 

control, nuclear power plant  

 
1. INTRODUCTION 

 

The Nuclear Power Plant (NPP) has a very 

complex dynamics and control. The nuclear power 

plant considered in this paper is a Pressurized 

Heavy Water Reactor (PHWR) type which uses 

compensator based complex hardwired distributed 

control system. The reactor power is controlled by 

manipulating the moderator control valve position 

in a nuclear power plant which in turn changes the 

moderator level in reactor core. So it approximates 

to a Single Input Single Output (SISO) system. 

Therefore, this SISO system uses Moderator Level 

Control (MLC). The details of nuclear power plant 

under consideration are available in [1, 2].  

The nuclear power plant has many states. Some 

of them are slowly varying and some are fastly 

varying states. Hence, it posses two-time-scale 

dynamics which is identified using system 

identification tool based on ARX modeling 

approach [2]. The dynamics of a research reactor 

is modeled using Monte Carlo method in [3]. The 

dynamics of primary side of Russian power 

reactor is modeled based on first principle method 

in [4]. The nonlinear dynamics of research and 

power reactors have been identified by different 

researchers using feedforward and recurrent neural 

networks in [5, 6]. Different algorithms are 

Original Article 

 

 

―――――――――――――――――――― 

Received, August 2011; Accepted, June 2012 

*Corresponding author: Arshad H. Malik; Email: mastermind_arshad@yahoo.com 



86 Arshad H. Malik et al 

  

proposed in [7] for subspace system identification. 

In this research work, a Deterministic-Stochastic 

Subspace Identification via Principle Component 

Analysis (DSSIPCA) has been adopted for 

modeling the two-time-scale nuclear power plant 

dynamics in state space form.  

A singular perturbation theory based model 

decomposition strategy has been adopted in [2] for 

a nuclear power plant. Another quick and efficient 

model decoupling strategy based on matrix 

reducibility is presented in [8] for non-nuclear 

applications. Therefore, in this research work, a 

higher order model decoupling using Nonlinear 

Recurrent Artificial Neural Network (NRANN) 

has been attempted.  

A fast output sampling and periodic output 

feedback controllers have been designed for 

special control of PHWR in [9, 10]. Different 

linear optimal controllers have been designed for 

nuclear power plant in LabVIEW environment in 

[11]. A model predictive composite reactor power 

controller and H∞ power controller are designed 

for an operating nuclear power plant in Pakistan 

[1] in [12, 13]. An output tracking sliding mode 

controller is designed for thermionic converters of 

space nuclear reactor in [14].  

A sliding mode controller has been proposed 

for rod control system for research reactor in 

Pakistan using supper twisting algorithm in [15]. 

A recursive sliding mode and fuzzy adapted 

sliding mode controllers have been designed for 

turbine throttle pressure regulation for advanced 

boiling water reactor in [16, 17]. A sliding mode 

observer has been designed for spatial control of 

PHWR in [18]. A discrete time output feedback 

sliding mode controller has been proposed for 

spatial control of PHWR in [19].  

All these sliding mode controllers have been 

designed based on single-time-scale consideration 

while modeling and controller design for research 

reactor, advanced boiling water reactor and 

PHWR. Also, the concept of Liquid Zone 

Controller (LZC) for spatial xenon control in 

PHWR type nuclear power plant has been 

considered in [9, 10]. But in this research work, an 

attempt has been made to design a Novel Robust 

Discrete Nonlinear Controller (NRDNC) based on 

Discrete Sliding Mode for Two-Time-Scale Model 

Decoupling (DSMTTSMD) in Triangular Block 

Structure (TBS) form using Matrix Reducibility 

Concept (MRC) optimized by NRANN. This 

controller has been designed based on MLC 

design concept which is different from LZC 

design concept.   

Hence in this research work, a new hybrid 

technique is proposed based on mixed linear and 

nonlinear technologies. This new closed loop 

configuration is composed of DSSIPCA, NRANN 

and NRDNC based on DSMTTSMD using MRC 

for a different PHWR [1] with MLC design 

concept. 

 

2. MATERIALS AND METHODS   

 

2.1. Moderator Level Control System (MLCS)   

Basically the reactor power control in PHWR is 

accomplished by moderator level controller, rod 

controller and chemical shim controller. The main 

controller for large power excursions in an 

operating PHWR in Pakistan is a moderator level 

controller while rod controller is a regulating 

controller for fine tuning of power. The shim 

controller is used at the time of reactor start-up 

only. In this research work, only moderator level 

controller is considered for coarse power control 

in PHWR. The change in moderator level is 

accomplished by manipulating the moderator 

control valve. This moderator level controller is 

known as reactor power controller. The existing 

controller is a compensator based controller with 

hundreds of permissive and interlocks 

implemented on seven programmable controllers 

forming a distributed control system. This 

controller is interfaced with real nuclear power 

plant. Therefore, the main objective of this 

research work is to formulate the dynamics of 

plant in state space and synthesize a controller 

based on identified model.  

 

2.2. Deterministic-Stochastic Subspace 

Modeling  

 

2.2.1. Model Structure  

In the safety analysis report of PHWR [1], 

different data sets are reported with and without 

measurement noise. In this research work, a huge 

data set is considered with measurement noise. 

Therefore, the deterministic-stochastic subspace 

model structure is selected for the identification of 

plant model. Subspace method uses Principle 

Component Analysis (PCA) to estimate the model 

parameters based on important modes of plant 
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dynamics. This method does not require a zero 

correlation between the input signal and output 

noise. If a measured moderator level control valve 

position is used as stimulus signal )(ku and 

measured reactor power is used as response 

signal )(ky then a recursive subspace identification 

framework can be developed which is shown in 

Fig. 1.  

The subspace model structure can be described as: 

idd eGkuBkxAkx  )()()1(   (1) 

idd ekuDkxCky  )()()(   (2) 

where Ad, Bd, Cd and Dd are matrices of 

appropriate dimensions of the identified system in 

discrete time and G is the Kalman gain.  

If )(kyP is the predicted reactor power output 

signal and )(keP is the prediction error between 

)(kyP and )(ky then the prediction error is given 

by: 





k

i

iP e
k

ke
1

21
)(   (3)  

where )()( kykye
iPii    

A Virtual Instrument (VI) is designed in 

LabVIEW 7.0 to identify the subspace model 

using plant time domain data. The block diagram 

design of this VI is shown in Fig. 2.  

2.2.2. Optimization Algorithm  

2.2.2.1. Computation of State Space Matrices: All 

state space matrices are computed based on least 

square algorithm using parameter matrix, past 

and future Hankel matrices and Sigular Value 

Decomposition (SVD) as reported in [7].  

The front panel design for the identification of 

subspace model is shown in Fig. 3.  

 
 

Fig. 1. Block diagram for deterministic-stochastic subspace identification of plant. 
 

 
Fig. 2. Block diagram design for state space model from time domain plant data. 
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2.2.2.2. Computation of Kalman Gain: Kalman 

gain is computed based on least square 

algorithm using first block column optimization 

[7]. 
 

2.2.2.3. Computation of Initial States: Initial 

states of system are estimated based on least 

square algorithm using Kalman gain, extended 

model matrices composed of extended 

observability matrix and Hankel matrices [7]. 

 
2.3. Neural Decoupling 

 

2.3.1. Recurrent Artificial Neural Network 

The recurrent neural network uses the concept of 

multidirectional information flow. It incorporates 

the sense of time and memory of previous states 

[5]. In this research work, a delta learning 

algorithm is used for supervised learning of 

recurrent artificial neural network. This neural 

network is a globally recurrent neural network 

utilizing the concept of time delay structure.  

2.3.2. Decoupled Model Structure 

If T is the similarity transformation matrix then the 

transformed model can be represented as: 

)()()1( kuBkxAkx tdttdt    (4) 

)()()( kuDkxCky tdttdt    (5) 

where Atd, Btd, Ctd and Dtd are matrices of 

appropriate dimensions of the transformed plant 

model in discrete time. The subscript td stands for 

“transformed, discrete-time”.  

The transformed discrete time state space model 

can be modeled as: 

)()()1( 11 kuBTkxATTkx tt
    (6) 

)()()( kuDkxCTky tt    (7) 

Now, the problem is to compute the similarity 

transformation matrix based on matrix reducibility 

technique which is to be computed using recurrent 

ANN.  

The purpose is to decouple the higher order 

plant model into slow and fast dynamics models. 

Using matrix reducibility technique [8], the 

decoupled transformed slow and fast dynamics 

models of two-time-scale nuclear power plant 

model can be obtained. 

The transformed slow dynamics model coupled 

with fast dynamics model of two-time-scale 

nuclear power plant model can be obtained as: 

)()()()1( kuBkxAkxAkx stfsftssts    (8) 

)()()()( kuDkxCkxCky stfftssts    (9) 

where As, Asf, Bs, Cs , Cf and Ds are slow 

subsystem, coupled slow-fast subsystem, slow 

input subsystem, slow output subsystem, fast 

output subsystem and slow direct transmission 

 
 

Fig. 3. Front panel design for estimation algorithm using state space model. 
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data matrices of the transformed slow plant model 

in discrete time. The subscripts ts and tf stands for 

“transformed, slow” and “transformed, fast” 

respectively.  

Since the slow-fast mode does not appear in 

transformed discrete time state space model due to 

decoupling. Therefore, the transformed fast 

dynamics model coupled with slow dynamics 

model of two-time-scale nuclear power plant 

model can be obtained as: 

)()()1( kuBkxAkx ftfftf    (10) 

)()()( kuDkxCky ftfftf    (11) 

where Af, Bf, Cf and Df are fast subsystem, fast 

input subsystem, fast output subsystem and fast 

direct transmission data matrices of the 

transformed fast plant model in discrete time.  

After some change in state variables, 

manipulations and simplifications, the purely slow 

dynamics of two-time-scale nuclear power plant 

model can be arrived at [2]: 

)(])([)()1( 1 kuBBAIAkxAkx ssfffsfsss  

  (12) 

)(])([)()( 1 kuDBAICkxCky ssffffsss  
  (13) 

where If is a fast identity matrix of the transformed 

decoupled plant model in discrete time.  

If )(kys is the predicted slow dynamics model 

and )(kes is the predicted mean square error 

(MSE) between )(kyP and )(kys then the MSE is 

given by: 





k

j

js e
k

ke
1

21
)(    (14)  

where )()( kykye
jj sPj    

The framework of obtaining decoupled two-

time-scale system using globally recurrent neural 

optimization is shown in Fig. 4.  

2.3.3 Neural Optimization Algorithm 

Now, the objective is to compute the values of 

As, Asf, Bs, Cs and Ds using similarity 

transformation matrix (T). This similarity 

transformation matrix (T) is estimated using 

recurrent ANN which results in triangular block 

structure.  

If Q is the external input and N is the number of 

neurons then )(ku and )(kys are Q ×1 input vector 

applied to recurrent ANN and N ×1 output vector 

at discrete instant k respectively. The input vector 

)(ku and one step delayed output vector 

)(kys forms an input layer of recurrent ANN. If W 

is the recurrent ANN weight matrix then it can be 

defined as the product of transformed triangular 

block matrix and transformed slow-fast plant input 

matrix: 

 

Fig.  4. Block diagram for system decoupling using recurrent neural network. 
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0
      (15)  

The weight change and weight update logics 

are devised and computed successively using delta 

learning algorithm [7]. 

Once the similarity transformation matrix is 

obtained using recurrent ANN, transformed state 

space model is obtained using a specially designed 

new virtual instrument in LabVIEW 7.0 as shown 

in Fig. 5.   

 
2.4. Synthesis of Robust Discrete Nonlinear 

Controller 

 

2.4.1. Concept of Sliding Mode Control 

Now-a-days sliding mode control has gained a 

great popularity in nonlinear control design. The 

sliding mode control utilizes attaining prescribed 

plant dynamics by defining sliding surface on 

which sliding mode occurs. The control system so 

obtained becomes robust, insensitive to 

uncertainties and disturbances. Since modern 

control systems are implemented on digital 

Programmable Logic Control (PLC) systems, so 

the design of nonlinear sliding mode controller in 

discrete domain is genuine. The closed loop 

configuration of nonlinear control system design is 

shown in Fig. 6.    

 

2.4.1.1. Formulation of sliding surface for 

decoupled Two-Time-Scale NPP Model: If n is the 

order of original higher system model then the 

sliding surface parameters for original higher order 

can be defined as [18]: 

Sliding surface parameters for original higher 

order system model =  

 
Fig. 5. Block diagram design for transformation matrix computation. 

 

 

 
 

Fig. 6. Closed loop configuration of nonlinear control system. 
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ccccch
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ssssS

n
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321
  

Similarly, if tn is the order of transformed 

higher system model and rs is the order of slow 

system model then sliding surface parameters for 

transformed higher order and purely slow 

dynamics models can be formulated as: 

Sliding surface parameters for transformed higher 

order model = 









tn

tn

tctctctccth
I

K
ssssS

n
][

321
  

Sliding surface parameters for purely slow system 

model = 









rs

srs

cscscsccps
I

K
sssssS

rs
][

321
  

where Kn, Ktn and Ksrs are nonlinear sliding mode 

controllers optimal gains for  original higher order, 

transformed higher order and purely slow 

subsystem models respectively.  

Now, the sliding surface for original higher order 

system model can be defined as [16]: 

)()( kxSks T
chh    

(16)
 

Similarly, the sliding surface for transformed 

higher order model can be defined as: 

)()( kxSks t
T
cthth   

17)
 

And, the sliding surface for purely slow dynamics 

system model can be defined as: 

)()( kxSks s
T
css    

(18)
 

The chS and cthS can be linked with following 

relationship [19]:  

chcth STIS
rs

1]0:[ 
  

(19)
 

 

2.4.1.2. Formulation of discrete nonlinear 

controller for Purely Slow NPP Model: For the 

given problem using equation (1), equation (12) 

and equation (18), the discrete time sliding mode 

control law described in [16] can be reformulated 

for purely slow dynamics system model as: 

1 2 3 nr

T 1 T 1
s cs d cs sf f f f s s

S S S S s

u (k) [(S B ) {S A (I A ) B B }]x (k)

[K K K K ]x (k)

     

   
(20) 

 

2.4.1.3. Formulation of discrete nonlinear 

controller for Higher Order NPP Model:  

Similarly, for the given problem using equation 

(1), equation (6) and equation (17), the discrete 

time sliding mode control law described in [16] 

can be reformulated in terms of states of original 

higher order system model as: 

T 1 T 1
h cth d cth d

1 2 3 n

u (k) [(S B ) (S T B )]x(k)

[K K K K ]x(k)

   

   
(21) 

 

2.4.1.4 Formulation of closed loop reference 

tracking nonlinear control system:  If r(k) is the 

reference signal then the closed loop reference 

tracking control system based on slow controller 

can be represented as: 

)()(])()[()( 11 krkxBTSBSku T
cthd

T
cths  

  
(22)

 

Similarly, the closed loop reference tracking 

control system based on higher order controller 

can be represented as: 

T 1 T
h cs d cs sf

1
f f f s s

u (k) [(S B ) {S A

(I A ) B B }]x (k) r(k)





 

  
  

(23) 

Since, after change of state variables and some 

manipulations, we arrive at that the closed loop 

dynamics of slow dynamics system model with 

equation (20) depicts the similar closed loop 

dynamics of original higher order system model 

with equation (21). Therefore, ultimately, we arrive 

at the following approximation without loss of 

generalization: 

 )()()()()( krkxKkukuku hs    
(24) 

 

3. RESULTS AND DISCUSSION 

 

In this section, all important results related to 

subspace modeling, neural decoupling and 

nonlinear controller design are presented and 

discussed.  

 

3.1 Parameter Estimation of Subspace NPP 

Model 

The subspace model of nuclear power plant is 

developed based on real time domain data. The 

time domain data is fetched from an operating unit 

of PHWR type nuclear power plant in Pakistan at 

a sample time of 0.01 sec. This dataset is a noisy 

measurement data. The dataset is divided into two 

subsets, one containing 63900 patterns for the 

identification while second containing 1000 

patterns for the validation purposes. The state 

space model of nuclear power plant is identified 



92 Arshad H. Malik et al 

  

using equations (1) through (3). The design 

parameters for the identification and validation of 

model are presented in Table 1. The optimization 

of model prediction error is shown in Fig. 7. The 

optimized prediction error is found to be 0.02.  

 

Table 1. Design parameters for subspace model 

identification and validation. 

Design Parameter Value 

Sample Time for Fetching Real Time 

Plant Data 

0.01 sec 

Number of Time Domain Patterns for 

Identification 

63900 

Number of Time Domain Patterns for 

Validation 

1000 

Optimal Prediction Error  0.02 

 

 

The optimized Kalman gain matrix is given as: 
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The identified discrete time state space model can 

be put in partitioned form as: 
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Fig. 7. Optimization of state space model prediction error. 
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3.2 Validation of Subspace NPP Model  

In validation phase, 1000 patterns are used for 

validation purpose. The reactor power can vary 

from 0% to 100% under normal conditions while it 

can vary from 0% to 120% under large power 

excursions. But it can vary from 0% to 125% 

under large power excursion with measurement 

noise. Therefore, this reactor power varying from 

0% to 125% is normalized between 0 1nd 1.25. 

The comparison of measured and model predicted 

normalized reactor power is shown in Fig. 8 which 

shows excellent agreement between measured and 

predicted results.  

 

3.3. Training of Recurrent ANN for 

Decoupled Subspace NPP Model 

In the design of recurrent ANN, one external input 

and 2 neurons are used. A (1×1) input vector 

applied is to recurrent ANN and as a result a (2 

×1) output vector progresses at each discrete 

instant of time in 0.01 sec. The input vector 

)(ku and one step delayed output vector 

)(kys forms an input layer of recurrent ANN. The 

starting order of the original system model is n = 8 

while the target of order slow dynamics and fast 

dynamics models are rs = 2 and rf  = 6 respectively. 

The recurrent ANN is trained using delta learning 

algorithm and the optimized network is obtained at 

a learning rate of η = 0.019 against 45 epochs. The 

optimal MSE value is found to be 0.005 which 

proves that a highly efficient and fast recurrent 

ANN has been designed. The designed recurrent 

ANN parameters are presented in Table 2. The 

MSE optimization of recurrent ANN for 

decoupling is shown in Fig. 9. 

 

 

Fig. 8. Comparison of measured and model predicted data. 

 

 

Fig. 9. MSE optimization of recurrent neural network for decoupling. 
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Table 2. Design parameters for recurrent ANN. 

Design Parameters Values 

Discrete Time Step (k) for 

Recurrent ANN 

0.01 sec 

Order of Original Higher Order 

System (n) 

8 

Order of Target Slow System (rs) 2 

Order of Target Fast System (rf) 6 

Number of Neurons (N) 2 

Number of External Inputs (Q) 1 

Learning Rate (η) 0.019 

Number of Epochs 45 

Optimal MSE for Recurrent ANN 

Design 

0.005 

 

3.4 Decoupled Slow NPP Model  

After training the recurrent ANN, the decoupled 

slow dynamics model is obtained using equations 

(12-13) as follows: 

s s

s

0.06971 0.3107
x (k 1) x (k)

0 0.5312

0.2813
u (k)

0.1557

 
   

 

 
  

 
 

    )(0168.0)(01173.04144.0)( kukxky sss   

The comparison of open loop response of 

original higher order model and decoupled slow 

dynamics model is shown in Fig. 10 which proves 

that a successful realization has been made. 

 

3.5 Synthesis of Robust Discrete Nonlinear 

Controller for NPP Model  

The values of designed sliding surface parameters 

are shown in Table 3. The values of optimal gain 

sequence for slow discrete nonlinear controller are 

computed using sliding surface and equation (20) 

and are shown in Table 4. Similarly, the values of 

optimal gain sequence for original higher system 

is computed using equation (21) and are shown in 

Table 5. The performance of closed loop nonlinear 

control system is tested under step signal which is 

introduced in the system through a reference  

 

signal r(k). The variation of control signal u(k) is 

shown in Fig. 11 which starts appearing in 1.6 sec 

and completes its control action quickly in next 1 

sec. The variation of reference signal r(k) and 

normalized reactor power y(k) is shown in Fig. 12. 

Since it is required that control system for nuclear 

power plant should be so designed that it must not 

take any overshoot and oscillations. Therefore, 

from the response shown in Fig. 12, it is proved 

that a critically damped control system is designed 

without any overshoot which tracks the reference 

signal in excellent fashion.       

 
Table 3. Sliding function parameters for slow 

plant model. 

Design Parameter Value 

ssc1 - 0.3271 

ssc2 - 5.2861 

 

 

Table 4. Optimal gains sequence for slow 

nonlinear controller design. 

Design Parameter Value 

Ks1 0.9713 

Ks2 2.249 

   

 

Table 5. Optimal gains sequence for full order 

nonlinear controller design. 

Design Parameter Value 

K1 0.97136 

K2 2.28215 

K3 0.77214 

K4 0.43983 

K5 0.05331 

K6 0.01198 

K7 0.00309 

K8 0.00072 
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Fig. 10. Comparison of open loop original and reduced order system response. 

 

 
 

Fig. 11. Variation of control signal. 

 

 
 

Fig. 12. Variation of normalized closed loop plant power output. 
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4. CONCLUSION 

 

A hybrid technique based on linear and nonlinear 

technologies has been proposed for two-time-scale 

nuclear power plant modeling and control 

synthesis purposes. A subspace higher order 

model has been identified for two-time-scale 

nuclear power plant using deterministic-stochastic 

method via Principal Component Analysis. The 

higher order model is decomposed into two slow 

and fast subsystems. The decoupling process is 

optimized using recurrent neural network. A 

robust discrete nonlinear controller is proposed for 

decomposed two-time-scale nuclear power plant 

model in triangular block structure form based on 

sliding mode control design methodology. The 

proposed hybrid design produces fast control 

without any overshoot.    
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