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Abstract: In this paper, a Novel Multi-Objective Mixed Stochastic Optimization (NMOMSO) based Neuro-

Controller (NC) is synthesized for Multi-Input Multi-Output (MIMO) Reactor Coolant Pressure Control System 

(RCPCS) of Pressurized Heavy Water Reactor (PHWR)-type Nuclear Power Plant (NPP). In RCPCS, a new 

MIMO Modified Particle Swarm Optimization Algorithm (MPSOA) based nonlinear Adaptive Feedforward 

Neural Network (AFNN) model (MIMO MPSOA-AFNN) of the Reactor Coolant Pressure System (RCPS) is 

developed mapping five inputs and two outputs. A highly intelligent NMOMSO based NC is designed using 

AFNN and Mixed Stochastic Optimization Techniques (MSOT) in a MIMO framework. The NMOMSO is 

comprised of five Multi-Input Single-Output (MISO) AFNN optimized by MSOT. Three different stochastic 

techniques are used for the optimization of weight matrices of five MISO intelligent networks. A Modified 

Particle Swarm Optimization Algorithm (MPSOA) is used for the optimization of two intelligent MISO networks 

parameters for two feed valve positions. An Ant Colony Optimization Algorithm (ACOA) is implemented for the 

optimization of two intelligent MISO networks for two bleed valve positions and a Bee Colony Optimization 

Algorithm (BCOA) is used for the optimization of one intelligent MISO network for one spray valve position of 

RCPCS. In the proposed NMOMSO based NC, a multi-objective problem is formulated based on five parallel 

operating MISO intelligent networks using new configuration of reactor coolant and steam pressure signals. The 

proposed MIMO MPSOA-AFNN model and NMOMSO based neuro-controller of RCPS is designed in 

MATLAB and a Graphical User Interface (GUI) is developed for variables transfer and simulations in Visual C. 

The performance of model based novel neuro-controller is compared with Conventional Coupled Controller 

(CCC) using PID controlled reactor coolant pressure and ON-OFF controlled surge tank level and found 

remarkable. 

Keywords: Nonlinear modeling, artificial intelligence, stochastic optimization, multi-objective control, reactor 

coolant pressure control system, nuclear power plant  

 
1. INTRODUCTION 

A Nuclear Power Plant (NPP) is basically a large 

scale system consisting of about 250 systems. 

Amongst various plant systems, Reactor Coolant 

Pressure System (RCPS) is one of the most 

important critical systems of a plant. The details of 

plant dynamics and control are available in [1, 2].   

A system identification based linear model of 

Pressurized Heavy Water Reactor (PHWR) has 

been developed in [2]. The dynamics of 

Pressurized Water Reactor (PWR) and research 

reactor have been captured using recurrent neural 

network in [3]. A Multi-Input Multi-Output 

(MIMO) nonlinear model of PHWR has been 

identified in [4] using Adaptive Feedforward 

Neural Network (AFNN). A fuzzy logic controller 

has been designed for reactor coolant pressure 

control of PHWR in [5]. A MIMO adaptive neuro-

fuzzy intelligent control system has been recently 

developed for reactor coolant pressure control 

system of PHWR in [6] using existing signals of 
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primary pressure control loop.  

A neural network based predictive control has 

been devised for mobile robot [7] using particle 

swarm optimization (PSO). A fuzzy logic based 

reactor power controller has been designed for 

research reactor using PSO in [8]. A modified 

PSO based algorithm has been proposed in [9] 

using an adaptive inertial weight. A detailed 

design of steel frames has been proposed in [10] 

using ant colony optimization. A preliminary 

design concept using bee optimization algorithm 

has been introduced in [11]. A detailed application 

has been proposed for control chart pattern 

recognition using bee optimization algorithm in 

[12].  

In this research, a new highly nonlinear MIMO 

neural model of RCPS is developed using hybrid 

modified particle swarm optimization algorithm 

and an adaptive feedforward neural network. A 

new signal configuration is proposed based on 

both primary and secondary loops of PHWR-type 

nuclear power plant for better control of reactor 

coolant pressure. Based on new signal 

configuration, a novel MIMO neuro-controller is 

proposed using multi-objective mixed stochastic 

optimization design approach. The proposed 

MIMO neuro-controller is a highly complex 

design configured with one thousand fifty three 

controller design parameters using hybrid 

modified particle swarm optimization algorithm 

and an adaptive feedforward neural network for 

two feed valves position control, hybrid ant colony 

optimization algorithm and an adaptive 

feedforward neural network for two bleed valves 

position control, and hybrid bee colony 

optimization algorithm and an adaptive 

feedforward neural network for spray valve 

position control. This mixed stochastic multi-

objective control problem is solved using hybrid 

global and local optimization techniques.              

 

2.  MATERIALS AND METHODS   

 

2.1.  Reactor Coolant Pressure System     

The purpose of reactor coolant pressure system 

(RCPS) is to maintain 1500 psig coolant pressure 

in order to avoid boiling in reactor coolant. 

Therefore, high coolant temperature can be 

attained by maintaining this pressure. The RCPS 

consists of a feed-bleed system and a surge tank. 

The feed-bleed system consists of two feed valves 

( 21 , FVFV ), two bleed valves ( 21 , BVBV ) and one 

spray valve ( SV ). The surge tank consists of three 

heaters. The detail of RCPS is available in [6].  

 

2.2. Conventional Coupled Controller for 

RCPS    

The reactor coolant pressure is controlled by a 

conventional coupled controller consisting of a 

PID controller for feed-bleed system and ON-OFF 

controller for surge tank system. The PID 

controller works on Pe which is a reactor pressure 

control error signal using PsetP and P as the reactor 

coolant pressure set-point and the measured 

reactor coolant pressure respectively. Similarly, 

the ON-OFF controller works on Le which is a 

surge tank level control error signal using setL  and 

L as surge tank level set-point and measured surge 

tank level signal respectively. The closed loop 

architecture of conventional coupled controller 

based reactor coolant pressure control system 

(RCPCS) is shown in Fig. 1.  

 

 

Fig. 1. Closed loop architecture of CCC and 

NMOMSO based RCPCS. 

 

2.3. Adaptive Feedforward Neural Network 

(AFNN) 

Both RCPS model and its neuro-controller are 

basically intelligent nonlinear structures 

consisting of weights and biases matrices. These 

weights and biases are known neural 

parameters. The basic architecture of both 
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neural RCPS model and its neuro-controller is 

an adaptive feedforward neural network 

(AFNN). Therefore, using the algorithm of 

AFNN [4], the objective function of AFNN can 

be generalized for n number of patterns at k-th 

iteration as: 

n

H I M
k 1

2
I H M

1
J(k) [f (W (k), W (k), U (k) ,

2

B (k),B (k)) Y (k)]



 

  (1) 

where f(.) is a nonlinear function and MU , MY , 

HW , IW , HB  and IB are measured input vector, 

measured output vector, weights matrix 

associated with hidden layer, weights matrix 

associated with input layer, biases vector 

associated with hidden layer and biases vector 

associated with input layer respectively. MU is 

an input vector of five inputs as two feed valve 

positions, two bleed valve positions and one spray 

valve position respectively while MY  is an output 

vector of two outputs as reactor coolant pressure 

signal and steam pressure signal respectively for 

neural RCPS modeling. Similarly, MU is an input 

vector of three inputs as reactor coolant pressure 

error signal, reactor coolant pressure rate signal 

and steam pressure rate signal while MY  is an 

output vector of five outputs as two feed valve 

positions, two bleed valve positions and one spray 

valve position respectively for neural RCPS 

controller model. 

 
2.4. Mixed Stochastic Optimization 

Methodology  

 

2.4.1. Stochastic Optimization Techniques  

Now, the objective is to optimize parameters of 

neuro-controller using stochastic techniques. In 

this research work, a mixed stochastic 

optimization approach has been adopted for the 

computation of neuro-controller parameters. 

The combination of three most recent and 

popular stochastic optimization techniques are 

selected for this design work. These stochastic 

techniques are modified particle swarm 

optimization, ant colony optimization and bee 

colony optimization.  

 

2.4.2. Modified Particle Swarm Optimization 

Algorithm (MPSOA)  

In particle swarm optimization algorithm, each 

solution is called a particle. In stochastic search, 

a population size is defined which determines 

the number of particles in a solution space. Each 

particle acts like a point in N-dimensional 

search space. All particles communicate with 

one another. Each particle has its current 

position, previous position, best attained 

previous position and moving velocity 

designated as CiX , PiX , BiX and MiV respectively. 

In discrete domain, the new velocity of each 

particle seeking for best particle with dynamic 

adaptation can be formulated using algorithm [9] 

as: 

NEW CURRENTMi W Mi 1 Pi Ci 1

2 Bi Ci 2

V I V (X X )R

(X X )R

  

 
 (2) 

where IW, µ1, µ2, R1 and R2 are adaptive inertial 

weight, stochastic learning rate for cognitive 

coefficient, stochastic learning rate for social 

coefficient, random number sequence for cognitive 

term and random number sequence for social term 

respectively.  

The new position of particle is given by: 

NEW CURRENT NEWi i MiX X V 
 (3) 

 

2.4.3. Ant Colony Optimization Algorithm (ACOA) 

In ant colony optimization algorithm, each 

solution is called an ant. In stochastic search, a 

population size is defined which determines the 

number of ants in a solution space. Each ant 

moves greedily in an N-dimensional search 

space for food point. All ants communicate with 

one another so as to find the shortest distance 

between nest and food point by depositing 

pheromone trials. Each ant has ni (i= 1,2,…,N) 

paths to travel with αi pheromone 

concentrations. In discrete domain, the 

deposition of pheromone concentration 

associated with each path can be formulated 

using algorithm [10] as: 

CURRENT PREVIOUSi i i   

 

(4) 

where χ is a pheromone evaporation rate.  

The change in pheromone concentration is given 

by [10]: 
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N

ii
i 1

if an ant chooses new path
g (.)

0 otherwise





   

  

(5)

 

where β is called pheromone reward factor and gi 

(.) is called a performance index.  

The stochastic model of ant (Aant) is given by [10]: 

   

   

a b

i i
anti N a b

i i i
i 1

h
A

h n







  (6) 

where a and b are nonlinear parameters and hi is 

called preferred path selection factor.   

 

2.4.4. Bee Colony Optimization Algorithm (BCOA) 

In bee colony optimization algorithm, bees are 

classified into three classes called scout bees, 

employed bees and onlooker bees respectively. 

In stochastic search, a population size is defined 

which determines the number of scout bees in a 

solution space. Each scout bee moves greedily 

in an Nscout-dimensional search space for food 

point. All scout bees communicate with one 

another so as to find food sources close to their 

hive. The scout bees search for food sources 

randomly. The total search space for all bees is 

N-dimensional. Food sources are basically the 

good solutions in search space. The employed 

bees are associated with specific food sources 

while onlooker bees are closely watching the 

movement of employed bees within the hive for 

choosing food source. The locations of food 

sources are basically the possible solutions 

while amount of nectar is basically a fitness 

function of an optimization problem. Details of 

an algorithm are available in [11, 12]. If xF is the 

location of food source and xFNEW is the new 

location of food source searched by employed 

bees then neighbour food source xFNEWi is given 

by using algorithm [12] as:  

NEWiF Fi 3 Fi Rix x R (x x )    (7) 

where R3 and xRi are random sequence for 

employed bees and randomly selected food 

sources respectively.  

The fitness function of neighbour food source is 

given by [12]: 

F
F

F F

1
if (x ) 0

1 (x )Fitness

1 abs( (x )) if (x ) 0


 

 
      

(8)

 

where ψ(.) is an objective function value of 

solution xF.  

The stochastic model with which xF is selected by 

 
 

Fig. 2. Structure of inputs and outputs of MIMO MPSOA-AFNN model of RCPS. 
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an onlooker bee (Oonlookerbee) is given by [12]: 

i

i
onlooker bee N

i
i 1

Fitness
O

Fitness




  

(9) 

2.5. Development of MIMO Nerual Reactor 

Pressure Coolant System Model 

2.5.1. Selection of Inputs and Outputs for Neural 

Model of RCPS  

The inputs and outputs of conventional RCPCS 

are shown in Fig. 1. There are five inputs and two 

outputs of RCPS. The five inputs are two feed 

valve positions, two bleed valve positions and one 

spray valve position while the two outputs are 

reactor coolant pressure signal and steam pressure 

signal respectively. These inputs and outputs are 

selected in such a way that the design, testing and 

validation of MIMO neural model based MIMO 

neuro-controller of RCPCS can be made.    

 

2.5.2. Architecture of MIMO Neural Model of 

RCPS 

The MIMO neural model of RCPS is designed 

based on two parallel operating MISO neural 

models. These two MISO neural models, MISO1 

and MISO2 are designed for predicting reactor 

coolant pressure signal and steam pressure signal 

respectively. The structure of inputs and outputs of 

MIMO MPSOA-AFNN model of RCPS is shown 

in Fig. 2. The parameters of MIMO neural model 

of RCPS are optimized by MPSOA. The MPSOA-

AFNN model optimization setup for RCPS is 

shown in Fig. 3.  

2.6. Novel Multi-Objective Mixed Stochastic 

Optimization Based Neuro-Controller 

 

2.6.1. Selection of New Inputs for Novel MIMO 

Neuro-Controller for RCPS  

The inputs of conventional coupled controller of 

RCPCS are Pe and Le  that are dependent 

on PsetP , P , setL and L . Both these signals are 

acquired from primary loop of PHWR-type 

nuclear power plant. In this research work, a new 

configuration of signals is devised for the design 

of novel multi-objective mixed stochastic 

optimization (NMOMSO) based neruo-controller 

(NC). One old signal and one new signal are 

acquired from primary loop and one new signal is 

acquired from secondary loop of plant. Thus, the 

new input signals for NMOMSO based NC are 

reactor coolant pressure error signal ( Pe ), reactor 

coolant pressure rate signal (
dt

dP
) and steam 

pressure rate signal (
dt

dPS ). The steam pressure 

rate signal is acting like a feed forward signal for 

this controller because this controller is meant for 

primary side but one steam pressure rate signal is 

being fed from secondary side of plant. This new 

combination of signals is more powerful because 

now it is an integration of primary and secondary 

sides and thus more information is being utilized 

in a better way.  

 

 

 
 

Fig. 3. MPSOA-AFNN model optimization setup for RCPS model. 
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2.6.2. Architecture of Novel MIMO Neuro-

Controller for RCPCS 

The structure of inputs and outputs for NMOMSO 

based RCPCS is shown in Fig. 4. NMOMSO 

based RCPCS is a MIMO neuro-controller. The 

MIMO NMOMSO based RCPCS is designed by 

decomposing it into five parallel operating MISO 

sub neuro-controllers. Five MISO sub neuro-

controllers are designed for predicting two feed 

valve positions, two bleed valve positions and one 

spray valve position respectively. All five MISO 

sub neuro-controllers are designed using hybrid 

configuration of stochastic optimization 

techniques and AFNN. The parameters of five 

MISO sub neuro-controllers are optimized using 

MPSOA, ACOA and BCOA. Based on optimal 

solutions obtained through each combination for 

each control valve, the optimal hybrid 

combinations of MPSOA-AFNN, ACOA-AFNN 

and BCOA-AFNN are found best suited for 

predicting two feed valve positions, two bleed 

valve positions and one spray valve position 

respectively. The decoupling of MIMO 

NMOMSO based NC into five MISO sub neuro-

controllers is shown in Fig. 5. The mixed 

stochastic optimization based setup for the 

selection of parameters of NC is shown in Fig. 6. 

 

Fig. 4. Structure of inputs and outputs for NMOMSO based RCPCS. 

 

 

 

Fig. 5. Decoupling of MIMO NMOMSO based NC into MISO sub neuro-controllers. 
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3.  RESULTS AND DISCUSSION 
 

The process of optimization of MIMO neural 

model and MIMO neuro-controller parameters is 

carried out in MATLAB. A graphical user 

interface (GUI) is developed for variable transfer 

and simulation of inputs and outputs of model and 

controller in Visual C environment as shown in 

Fig. 7.  
 

3.1.  Nonlinear Identification of MIMO MPSO 

Based RCPS 
 

Total 32766 patterns are acquired from an  

 

operating PHWR-type nuclear power plant [1]. 

These patterns are acquired under plant transient 

conditions. These patterns are classified into three 

sets of data called training, testing and validation 

datasets. The parameters of MIMO MPSOA-

AFNN RCPS model are set using equation (1)  

and are optimized using equation (2) and equation 

(3). The design parameters of MISO1 MPSOA-

AFNN and MISO2 MPSOA-AFNN for RCPS 

model are presented in Table 1 and Table 2 

respectively.  

 

 

 
Fig. 6. Mixed stochastic optimization for parameters of MIMO NC. 

 

 

Fig. 7. GUI for variables transfer and simulation in Visual C environment. 
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Table 1. Design parameters for MISO1 MPSOA-

AFNN model of RCPS. 

Network Parameter Value 

Total Patterns (100%) 32766  

Number of Training Patterns (60%) 16659  

Number of Testing Patterns (20%) 6553 

Number of Validation Patterns (20%) 6553 

Number of Neurons in Input Layer of MISO1 

MPSOA-AFNN 

5 

Number of Neurons in Hidden Layer of 

MISO1 MPSOA-AFNN 

39 

Number of Neurons in Output Layer of 

MISO1 MPSOA-AFNN 

1 

Number of Particles for MISO1MPSOA-

AFNN 

274 

Number of Runs for MISO1 MPSOA-AFNN 40 

Stochastic Learning Rate for Cognitive 
Coefficient of MISO1 MPSOA-AFNN 

1.8 

Stochastic Learning Rate for Social 
Coefficient of MISO1 MPSOA-AFNN 

1.5 

First Value of Adaptive Inertial Weight of 
MISO1 MPSOA-AFNN 

1.3 

Last Value of Adaptive Inertial Weight of 
MISO1 MPSOA-AFNN 

0.5 

Maximum Particle Velocity for MISO1 
MPSOA-AFNN 

18 

Number of Generation Cycles of MISO1 
MPSOA-AFNN 

3900 

MSE of MISO1 MPSOA-AFNN 2.7321 × 10-4 

 
Table 2. Design parameters for MISO2 MPSOA-

AFNN model of RCPS. 

Network Parameter Value 

Total Patterns (100%) 32766  

Number of Training Patterns (60%) 16659  

Number of Testing Patterns (20%) 6553 

Number of Validation Patterns (20%) 6553 

Number of Neurons in Input Layer of MISO2 

MPSOA-AFNN 

5 

Number of Neurons in Hidden Layer of MISO2 

MPSOA-AFNN 

39 

Number of Neurons in Output Layer of MISO2 

MPSOA-AFNN 

1 

Number of Particles for MISO2 MPSOA-AFNN 274 

Number of Runs for MISO2 MPSOA-AFNN 40 

Stochastic Learning Rate for Social Coefficient 

of MISO2 MPSOA-AFNN 

1.6 

First Value of Adaptive Inertial Weight of 

MISO2 MPSOA-AFNN 

1.4 

Last Value of Adaptive Inertial Weight of 

MISO2 MPSOA-AFNN 

0.4 

Maximum Particle Velocity for MISO2 

MPSOA-AFNN 

18 

Number of Generation Cycles of MISO2 

MPSOA-AFNN 

3967 

MSE of MISO2 MPSOA-AFNN 1.4589 × 10-4 

3.2. Nonlinear Identification of NMOMSO 

Based Neuro-Controller for RCPCS 

Similarly, same number of patterns is obtained for 

feed valve 1 and feed valve 2 positions and is 

classified into datasets. The parameters of MISO1 

and MISO2 MPSOA-AFNN sub neuro-controllers 

for predicting feed valve 1 and feed valve 2 

positions are set using equation (1) and are 

optimized using equation (2) and equation (3). The 

design parameters of MISO1 and MISO 2 

MPSOA-AFNN sub neuro-controllers are 

presented in Table 3 and Table 4, respectively.  
 

 

Table 3. Design parameters of MISO1 MPSOA-

AFNN sub neuro-controller for feed valve 1. 

Network Parameter Value 

Total Patterns (100%) 32766 

Number of Training Patterns (60%) 16659 

Number of Testing Patterns (20%) 6553 

Number of Validation Patterns (20%) 6553 

Number of Neurons in Input Layer of MISO1 

MPSOA-AFNN 

3 

Number of Neurons in Hidden Layer of 

MISO1 MPSOA-AFNN 

20 

Number of Neurons in Output Layer of 

MISO1 MPSOA-AFNN 

1 

Number of Particles of MISO1 MPSOA-

AFNN 

101 

Number of Runs for MISO1 MPSOA-AFNN  40 

Stochastic Learning Rate for Cognitive 

Coefficient of MISO1 MPSOA-AFNN 

1.9 

Stochastic Learning Rate for Social 

Coefficient of MISO1 MPSOA-AFNN 

1.5 

First Value of Adaptive Inertial Weight of 

MISO1 MPSOA-AFNN 

1.7 

Last Value of Adaptive Inertial Weight of 

MISO1 MPSOA-AFNN 

0.6 

Maximum Particle Velocity for MISO1 

MPSOA-AFNN 

5 

Number of Generation Cycles of MISO1 

MPSOA-AFNN 

3500 

MSE of MISO1 MPSOA-AFNN 2.8891 × 10-4 
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Table 4. Design parameters of MISO2 MPSOA-

AFNN sub neuro-controller for feed valve 2. 

Network Parameter Value 

Total Patterns (100%) 32766 

Number of Training Patterns (60%) 16659 

Number of Testing Patterns (20%) 6553 

Number of Validation Patterns (20%) 6553 

Number of Neurons in Input Layer of MISO2 

MPSOA-AFNN 

3 

Number of Neurons in Hidden Layer of MISO2 

MPSOA-AFNN 

20 

Number of Neurons in Output Layer of MISO2 

MPSOA-AFNN 

1 

Number of Particles of MISO2 MPSOA-AFNN 101 

Number of Runs for MISO2 MPSOA-AFNN  40 

Stochastic Learning Rate for Cognitive 

Coefficient of MISO2 MPSOA-AFNN 

2.0 

Stochastic Learning Rate for Social Coefficient of 

MISO2 MPSOA-AFNN 

1.6 

First Value of Adaptive Inertial Weight of MISO2 

MPSOA-AFNN 

1.6 

Last Value of Adaptive Inertial Weight of MISO2 

MPSOA-AFNN 

0.7 

Maximum Particle Velocity for MISO2 MPSOA-

AFNN 

5 

Number of Generation Cycles of MISO2 

MPSOA-AFNN 

3530 

MSE of MISO2 MPSOA-AFNN 3.7754 × 10-4 

 

 The parameters of MISO3 and MISO4 ACOA-

AFNN sub neuro-controllers for predicting bleed 

valve 1 and bleed valve 2 positions are set using 

equation (1) and are optimized using equation (4) 

to equation (6). The design parameters of MISO3 

and MISO 4 ACOA-AFNN sub neuro-controllers 

are presented in Table 5 and Table 6 respectively.  

 The parameters of MISO5 BCOA-AFNN sub 

neuro-controller for predicting spray valve 

position are set using equation (1) and are 

optimized using equation (7) to equation (9). The 

design parameters of MISO1 and MISO 2 

MPSOA-AFNN sub neuro-controllers are 

presented in Table 7.  

Table 5. Design parameters of MISO3 ACOA-

AFNN sub neuro-controller for bleed valve 1. 

Network Parameters Values 

Total Patterns (100%) 32766  

Number of Training Patterns (60%) 16659  

Number of Testing Patterns (20%) 6553 

Number of Validation Patterns (20%) 6553 

Number of Neurons in Input Layer of MISO3 

ACOA-AFNN 

3 

Number of Neurons in Hidden Layer of 

MISO3 ACOA-AFNN 

20 

Number of Neurons in Output Layer of 

MISO3 ACOA-AFNN 

1 

Number of Ants for MISO2 ACOA-AFNN 101 

Nonlinear Parameter1 for MISO3 ACOA-

AFNN 

1.5 

Nonlinear Parameter2 for MISO3 ACOA-

AFNN 

2.7 

Pheromone Evaporation Rate for MISO3 

ACOA-AFNN 

0.3 

Pheromone Reward Factor for MISO3 

ACOA-AFNN 

12 

Number of Generation Cycles of MISO3 

ACOA-AFNN 

205 

MSE of MISO3 ACOA-AFNN 1.2 × 10-5 

 

Table 6. Design parameters of MISO4 ACOA-

AFNN sub neuro-controller for bleed valve 2. 

Network Parameters Values 

Total Patterns (100%) 32766  

Number of Training Patterns (60%) 16659  

Number of Testing Patterns (20%) 6553 

Number of Validation Patterns (20%) 6553 

Number of Ants for MISO4 ACOA-AFNN 101 

Number of Neurons in Input Layer of MISO4 
ACOA-AFNN 

3 

Number of Neurons in Hidden Layer of 
MISO4 ACOA-AFNN 

20 

Number of Neurons in Output Layer of 
MISO4 ACOA-AFNN 

1 

Nonlinear Parameter1 for MISO4 ACOA-
AFNN 

1.3 

Nonlinear Parameter2 for MISO4 ACOA-
AFNN 

2.9 

Pheromone Evaporation Rate for MISO4 
ACOA-AFNN 

0.4 

Pheromone Reward Factor for MISO4 
ACOA-AFNN 

11 

Number of Generation Cycles of MISO4 
ACOA-AFNN 

231 

MSE of MISO4 ACOA-AFNN 1.5 × 10-5 
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Fig. 8. Simulation of measured primary pressure rate signal for NMOMSO based NC. 

 

 

Fig. 9. Simulation of measured steam pressure rate signal for NMOMSO based NC. 

 

 

Fig. 10. Simulation of primary pressure error signal for NMOMSO based NC. 
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Fig. 11. Comparison of conventional coupled and NMOMSO  

controllers for  predicting feed valve 1 position. 

 

 

Fig. 12. Comparison of conventional coupled and NMOMSO  

controllers for predicting feed valve 2 position. 

 

 

Fig. 13. Comparison of conventional coupled and NMOMSO  

controllers for predicting bleed valve 1 position. 
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Table 7. Design parameters of MISO5 BCOA-

AFNN sub neuro-controller for spray valve. 

Network Parameter Value 

Total Patterns (100%) 32766 

Number of Training Patterns (60%) 16659 

Number of Testing Patterns (20%) 6553 

Number of Validation Patterns (20%) 6553 

Number of Neurons in Input Layer of MISO5 
BCOA-AFNN 

3 

Number of Neurons in Hidden Layer of MISO5 
BCOA-AFNN 

20 

Number of Neurons in Output Layer of MISO5 
BCOA-AFNN 

1 

Total Number of Bees for MISO5 BCOA-
AFNN 

101 

Number of Groups of Bees for MISO5 BCOA-
AFNN 

3 

Number of Selected Sites for MISO5 BCOA-
AFNN 

12 

Number of Best Selected Sites for MISO5 
BCOA-AFNN 

4 

Number of Scout Bees for MISO5 BCOA-
AFNN 

56 

Number of Employed Bees for Best Selected 
Sites for MISO5 BCOA-AFNN 

30 

Number of Onlooker Bees for Remaining 

Selected Sites for MISO5 BCOA-AFNN 

15 

Dimension of Weight Set for MISO5 BCOA-
AFNN 

101 

Limit Value for MISO5 BACOA-AFNN 10201 

Number of Generation Cycles of MISO5 
BCOA-AFNN 

2800 

MSE of MISO5 BCOA-AFNN 5.5 × 10-6 

 

3.3.  Validation of Proposed NMOMSO Based 

Closed Loop Neuro-Control System for 

RCPCS 

The closed loop architecture of NMOMSO based 

neuro-controller for RCPCS is shown in Fig. 1. 

For closed loop performance analysis, three input 

signals reactor coolant pressure (primary pressure) 

rate signal, steam pressure rate signal and primary 

pressure error signal are applied at the input of 

proposed NMOMSO neuro-controller. The 

simulation responses of these signals are shown in 

Fig. 8-10. The comparison of conventional 

coupled and NMOMSO based controllers output 

for feed valve 1 is shown in Fig. 11. The 

performance of MISO1 MPSOA-AFNN sub 

neuro-controller is excellent both in transient and 

steady state phases. The response of feed valve 1 

controller is found much smooth as compared to 

that of conventional controller in early phase of 

transient and much lesser level of amplitude is 

observed in highly fluctuating region. The 

comparison of conventional coupled and 

NMOMSO based controllers output for feed valve 

2 is shown in Fig. 12. The response of MISO2 

MPSOA-AFNN sub neuro-controller is perfectly 

depicting the conventional controller throughout 

the transient and much lesser level of amplitude is 

observed in highly fluctuating region. The 

comparison of conventional coupled and 

NMOMSO based controllers output for bleed 1 is 

shown in Fig. 13. The performance of MISO3 

ACOA-AFNN sub neuro-controller is excellent 

throughout the transient and found bit smoother as 

compared to that of conventional controller and 

much lesser level of amplitude is observed in 

highly fluctuating region. The comparison of 

conventional coupled and NMOMSO based 

controllers output for bleed valve 2 is shown in 

Fig. 14. The response of MISO4 ACOA-AFNN 

sub neuro-controller is perfectly depicting the 

conventional controller throughout the transient 

and much lesser level of amplitude is observed in 

highly fluctuating region. The comparison of 

conventional coupled and NMOMSO based 

controllers output for spray valve is shown in Fig. 

15. The performance of MISO5 BCOA-AFNN sub 

neuro-controller is excellent and much lesser level 

of amplitude is observed in highly fluctuating 

region. The robustness of MIMO MPSOA-AFNN 

RCPS model is also validated through simulation 

experiments. The comparison of conventional 

coupled controller and NMOMSO based neuro-

controller for predicting primary pressure is shown 

in Fig. 16. The proposed model predicts real 

dynamics of primary pressure and model predicts 

bit faster output. The comparison of conventional 

coupled and NMOMSO based neuro-controller for 

predicting steam pressure is shown in Fig. 17. The 

proposed model predicts real dynamics of steam 

pressure and shown much smooth and faster 

output. Hence, a successful neural realization has 

been established for RCPCS.     

4. CONCLUSIONS 

 

A nonlinear MIMO neural model of reactor 

coolant pressure system of PHWR-type nuclear 

power has been developed using MPSOA-AFNN 

technique. A robust NMOMSO neuro-controller  
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Fig. 14. Comparison of conventional coupled and NMOMSO  

controllers for predicting bleed valve 2 position. 

 

 

Fig. 15. Comparison of conventional coupled and NMOMSO  

controllers for predicting spray valve position. 

 

Fig. 16. Comparison of conventional coupled and NMOMSO  

based controllers response for predicting primary pressure. 
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has been designed using mixed stochastic 

techniques. A robust NMOMSO neuro-controller 

has been integrated using five MISO intelligent 

sub controllers. Three stochastic techniques have 

been attempted for reactor coolant pressure control 

system. Amongst three techniques, modified 

particle swarm optimization algorithm has been 

found suitable for two feed valves positions, ant 

colony optimization algorithm has been found best 

for two bleed valves positions and bee algorithm 

has been found excellent for spray valve position. 

All training, testing and validation of proposed 

nonlinear neural model and NMOMSO based NC 

has been carried out in MATLAB. The 

performance of proposed NMOMSO based NC is 

validated by comparing it with conventional 

coupled controller and found excellent in transient 

and steady state conditions.  
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