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Abstract: The aim of the present paper is to discuss the influence of Hall current on the flows of second 
grade fluid. Two illustrative examples have been considered (i) Stokes first problem for heated flat plate (ii) 
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obtained. The results for hydrodynamic fluid can be obtained as the limiting cases.
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1.  Introduction

Recently, the Rayleigh Stokes problem for a flat 
plate and an edge has acquired a  special status. The 
solution of Stokes first problem for a Newtonian fluid 
is obtained employing similarity transformations in 
[1, 2]. But for the same problem in second grade 
fluid such similarity transformations are not useful 
[3]. In general, the governing equations of second 
grade fluid are one order higher than the Navier-
Stokes equation and to obtain an analytic solution 
is not so easy. Also for a unique solution one needs 
an extra condition. For the detail of this issue, I may 
refer the readers to the references [4-7]. In study [8] 
Bandelli et al. discussed the Stokes first problem 
using Laplace transformation treatment. It is shown 
that the resulting solution does not satisfy the 

initial condition. Fetecau and Zierep [9] removed 
this difficulty by using Fourier Sine transform 
technique. Christov and Christov [10] have given 
comments on [9] by showing that solution of [9] is 
incorrect and have given the correct solution. Heat 
transfer analysis on the unidirectional flows of a 
second grade fluid is examined by Bandelli [11]. In 
continuation Fetecau and Fetecau [12,13] analyzed 

the temperature distribution in second grade and 
Maxwell fluids for laminar flow on a heated flat 
plate and in a heated edge. The purpose of the 
present investigation is to extend the analysis of 
reference [12] for Hall effects. The corresponding 
results of Newtonian fluid can be recovered by 
choosing 0α = . In absence of Hall effects, the 
results can be obtained by letting 0 0.=B

2. Basic Equations

For second grade fluid the Cauchy stress tensorT  

is 

	 (1)	

where p is the scalar pressure, I  is the identity 

tensor, µ  is the coefficient of viscosity, ( 1, 2)i iα =  

are the material parameters of second grade fluid 
and ( 1,2)i i =A are the first two Rivlin-Ericksen 
tensors defined through 

         	 (2)

	

	 (3)
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in which t  is the time. The issue regarding the signs 
of 1α  and 2α  is controversy. For detailed analysis 
relevant to this issue, one may refer the readers to 

the references [14, 15]. The equations governing 
the MHD flow of heated fluid are:
Continuity equation: 

	  (4)

Equation of motion:

	 (5)                   

Energy equation:

	 (6)

Maxwell equations:		

	

	 (7)  

Generalized Ohm’s law:

      	 (8)

In above equations J is the current density, 
 

B(=B0 + b) is the total magnetic field, B
0 is the 

applied magnetic field, b is the induced magnetic 

field, σ  is the electrical conductivity of the fluid, E 

is the electric field, mµ is the magnetic permeability, 
d
dt

is the material derivative, ( )e cθ= is the internal 

energy, ρ is the fluid density, c  is the specific heat,
θ  is the temperature,  is the heat flux 
vector, r is the radial heating, ew and eτ  are the 

cyclotron frequency and collision time of electron 

respectively. It is assumed that E = 0   and b = 
0. Further (1)e ew Oτ ≈  and 1i iwτ <<   (where iw  

and iτ  are cyclotron frequency and collision time 

for ions respectively). Under the aforementioned 
assumptions, Eq (5) becomes

	 (9)          

where e ewφ τ=  is the Hall parameter.

3.	 The first problem of Stokes for 

a heated flat plate with Hall 

current

Let a second grade fluid, at rest, fill the space above 
an infinitely extended plate in (y, z)-plane. When 
time t = 0+ , the plate starts suddenly to slide, in 

its own plane, with velocity V. Let T(t) and f(x) 
denote the temperature of the plate for t ≥  0 and 

the temperature of the fluid at the moment t = 0. 
The velocity and temperature fields are

	 (10) 

( , ).x tθ θ=
where  is a unit vector in the y-direction. The 
continuity equation (4) is identically satisfied. 
Furthermore, Equations ( 6) and (9) give
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where µυ ρ=  is the kinematic viscosity, 

1 ,
k
c

α
α β

ρ ρ
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2
( , ) ( , )( , ) ( ) .v x t r x tg x t

c x c
υ

ρ
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The relevant initial and boundary conditions are 

( ,0) 0, 0, (0, ) ( ), 0,v x x v t V t t= > = > 	 (13)           

( ,0) ( ), 0; (0, ) ( ), 0,x f x x t T t tθ θ= > = ≥ 	 (14)   

( , )
( , ), , ( , ),

( , ) 0 .

∂
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v x tv x t x t
x

x t as x
x

θ

θ 	 (15)  
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By Fourier Sine transform, the solution for v  is

 sin .xdξ ξ 	 (16)                                                                                                                   

If the plate moves with constant velocity V, then 

 and the above equation simplifies to:

   (17)                                                                                                                                               

                                                                                                                                  

For B0 = 0, we get the results of reference [12]  
as  

	 2

2

0

2 sin( , ) 1 exp .
1

xv x t V t dυξ ξ ξ
π αξ ξ

∞  −
= −   +  

∫ 	 (18)

When 0α →  the above equation yields 
 

( , ) 1 ,
2

xv x t V Erf
tυ
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	 (19)

where  Erf (x) is the error function of Guass.     
Employing the same methodology as for v   we 
obtain
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At rest, the temperature distribution is the same 
in presence of Hall currents as for a second grade 
fluid and for a Newtonian one. Further if the radiant 
heating ( , )r x t  is negligible quantity the relation 
(20) takes the same form as in [12], i.e.,
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From the above results we see that, if t →∞ , then 

( , ) ( ).x t Tθ → ∞

Moreover, if the initial temperature of the fluid is 
zero and the plate is kept to the constant temperature 
T, Eq. (21) gives
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  
	 (22)

and ( , ) .x t T as tθ → →∞

4. 	The Rayleigh-Stokes problem for 

heated edge with Hall current

Consider a second grade fluid at rest occupying 
the space of the first dial of rectangular edge (x ≥  

0, - , 0)y z∞ < < ∞ ≥ . For t = 0+ , the extended 
edge is impulsively brought to the constant speed 
V . The walls of the edge have temperature ( )T t . 
The velocity and temperature fields are

ˆ( , , ) ,v x z t=V j 	 (23) 

( , , ).x z tθ θ=      

Equations (6) and (9) here are of the following 
forms: 
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The corresponding initial and boundary conditions 
are 

( , ,0) 0, 0, 0,v x z x z= > >

(0, , ) ( ,0, ) , 0,v z t v x t V t= = > 	 (26)

( , ,0) ( , ), 0; 0;x z f x z x zθ = > >

(0, , ) ( ,0, ) ( ), 0,z t x t T t tθ θ= = ≥ 	 (27)

where the function ( , )f x z   represents the 

temperature distribution of the fluid at the moment 
t = 0. Moreover, ( , , )v x z t , ( , , )x z tθ  and their 

partial derivatives with respect to x  and z  have 

to tend to zero as 2 2 .x z+ → ∞

	 Following the same method of solution as in 
section 3, we obtain
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When plate has constant velocity V,  then 

 and the above equation

reduces to 
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For B0 = 0 above equation reduces to the result 
of [12].

(30)

The expression of temperature is
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in which ( , ) ( , , )s sf and g tξ η ξ η are the double 
Fourier sine transforms of the functions 

( , ) ( , , )f x z and g x z t  with respect to the variables 
x  and z . When 0,α →  relations (30) and (31) 

reduce again to those resulting from the Navier-

Stokes fluids. Thus, we recover the universal profile 
of velocity [2].
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in which only similarity variables 
/ /x vt and z vt  occur. For z→∞ , ( , , )v x z t  

goes to ( , )v x t  given by (19). The expression for 
( , , )x z tθ  is
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which for z →∞  goes to 
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If the edge is maintained to the constant  

temperature  T, Eq. (33) takes the form

( , , ) 1 ( ) ( ) ,
2 2

x zx z t T Erf Erf
t t

θ
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= − 
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and ( , , ) .x z t T as tθ → →∞

5. Conclusions

In this paper, the exact solutions for laminar flow 
of an electrically conducting non-Newtonian fluid 
are obtained. The velocity field and the temperature 
distribution in a second grade fluid on heated flat 
plate and on a heated edge in the presence of 

Hall current are determined. These solutions are 
obtained using simple and double Fourier sine 
transforms and presented as a sum of steady state 

and transient solutions. For large values of time, 
when transient disappear, these solutions reduce 
to steady-state solutions. Direct calculations show 
that ( , )x tθ  and ( , , )x z tθ  of Eqs. (20) and (31) 
as well ( , )v x t  and ( , , )v x z t  of Eqs. (16) and 
(30) satisfy the corresponding partial differential 

equations together with the initial and boundary 
conditions.

Putting B0 = 0 in Eqs. (17) and (29), we obtain the 
results of [12]. If we put 0α →  in (17), (20), (30) 

and (31), we find corresponding solutions for the 

Navier-Stokes fluid. In a fluid at rest  the temperature 
distribution is the same whether it is second grade 
or not. If the radiant heating is negligible ( , )x tθ  

and ( , , )x z tθ  become ( )T as t∞ →∞  or  T if the 

plate and the edge are maintained to the constant 

temperature. The corresponding results in absence 
of Hall current can be obtained by choosing  
B0 = 0.
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