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1. INTRODUCTION

The class of fractional differential equations of 

various types plays important roles and tools not 

only in mathematics but also in physics, control 

systems, dynamical systems and engineering to 

create the mathematical modeling of many physical 

phenomena. Naturally, such equations required to 

be solved. Many studies on fractional calculus and 

fractional differential equations have appeared, 

involving different operators such as Riemann-

Liouville operators, Erdélyi-Kober operators, Weyl-

Riesz operators, Caputo operators and Grünwald-

Letnikov operators. The existence of positive 

solution and multi-positive solutions for nonlinear 

fractional differential equation are established and 

studied [1-4]. Moreover, by using the concepts of 

the subordination and superordination of analytic 

functions, the existence of analytic solutions for 

fractional differential equations in complex domain 

are suggested and posed in [5-8]. In addition, a 

generalization of fractional operators in the unit 

disk is imposed in [9]. One of the most frequently 

used tools in the theory of fractional calculus is 

furnished by the Riemann-Liouville operators [10]. 

The Riemann-Liouville fractional derivative could 

hardly pose the physical interpretation of the initial 

conditions required for the initial value problems 

involving fractional differential equations. 

Moreover, this operator possesses advantages of fast 

convergence, higher stability and higher accuracy 

to derive different types of numerical algorithms 

[11].

	 Our aim is to find the exact solution for different 
kind of fractional differential equations in sense of 

Riemann-Liouville fractional derivative, in terms of 

H-functions. Numerical solution for some equations 

are introduced by using the neural network.
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2.  PRELIMINARIES

Definition 2.1. The fractional (arbitrary) order 

integral of the function f  of order 0>α  is 
defined by 
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)(tδφα →  as 0→α  where )(tδ  is the delta 
function.

Definition 2.2. The fractional (arbitrary) order 

derivative of the function f  of order 1<0 α≤  is 
defined by 

Remark 2.1. From Definition 2.1 and Definition 
2.2, we have 

and 

The goal of this work is to find the exact solution for 
different kind of fractional differential equations, in 
terms of H-functions. We consider the non-linear 
fractional differential equation 
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Where RR →×][0,:))(,( Ttutf  is a continuous 
function. Also the exact solution for the linear case 

Furthermore, The multi-term fractional differential 
equation 
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subject to the initial condition (2) is solved.

By using Laplace technique where 

RR →× +1][0,: nTf  is a continuous function 

and 1<<<0 αα i  for all .1,...,= ni  Also, the 
non-constant coefficients fractional differential 
equation 

	 (4)

subject to the initial condition (2) is solved exactly 
in terms of H-functions. Finally, we find the exact 
solution for the mixed equation 

	 (5)

where c  denotes the fractional diffusion constant, 
with the integral initial condition 

	
(6)

For this purpose we need the following concepts.

Definition 2.3 The function )(sF  on the complex 
variable s  defined by 

is called the Laplace transform of the function )(tf
.
Definition 2.4 The Mellin transform of the function 

)(tf  is 

Definition 2.5 By −HsFox ,  functions we mean 
a generalized hypergeometric function, defined by 
means of the Mellin-Barnes type contour integral
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0≠z  where 'c  is a suitable contour in ,C  

the orders ),,,( qpnm  are integers such that 

,0,0 pnqm ≤≤≤≤  and the parameters 

qkBbpjAa kkjj 1,...,=0,>,1,...,=0,>, RR ∈∈  

are such that .0,1,2,...=,1),()( '' lllaBlbA jkkj −−≠+

Definition 2.6 The Fourier transformation for one 
dimension is defined as 

 

3.   THE EXACT SOLUTION

 The Laplace transform of equation (1) yields 

)).(,(=)( sUsFsUsα 	 (7)

 To invert the Laplace transform it is convenient use 
the relation 

	 (8)

between the Laplace transform and Mellin transform 
of the function  But 

 

where )(vF  is the Mellin transform of the function 

f  and  is the Mellin transform of the 

function  Hence 

Now inverting Mellin transform and comparing 

this with the definition of general −H
function, allows one to identity the −H  
function parameters for the first fraction as: 
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In the same way, we can show that the exact solution 
for equation (3), takes the form (9). For the equation 
(4), we have 
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4.  THE MIXED PROBLEM 

One of the main applications of the fractional 
calculus (integration and differentiation of arbitrary 
order)is the modeling of the processes. In this 
section, by applying Fourier transform with respect 

to x  and Laplace with respect to t  we shall provide 
the exact solution for the mixed problem (5-6). 
Fourier and Laplace transformation of equation 
(5-6) yields 

	

(10)

where q  is the Fourier transform parameter and u  is 

the Laplace transform parameter. To obtain  
first invert the Fourier transform in equation(10) 
using the formula 	

where 2)/2( −dK  is a Bessel function of order 

2)/2,( −d  which leads to:
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The Mellin transform of the Bessel function is 
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Substituting this in equation (11), using (8), and 
restoring the original variables then we have 
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where )(1 sG −  denotes the Mellin transform 

of the function ).,( uxG  Now inverting Mellin 
transform and comparing this with the general 

−H function allows one to identify the −H
function parameters as m = 0,n = 2,p = 2,q =  
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the second term , setting 1m = 0,n = 1,q = 1,p = 1,b  

1 1 1= 0,B = 1,a = A = 0.  Then the result becomes 
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For  and  equation (5) becomes 

the classical diffusion equation, and for 2=α  it 

becomes the classical wave equation, For   

we have the so-called ultraslow diffusion, and values 

2<<1 α  correspond to so-called intermediate 

processes. 

5.  ARTIFICIAL NEURAL NETWORK 

Neural network (NN) was first introduced by 
McCulloch and Pitts in 1943, since the introduction 
it has been widely used in different real world 
classification tasks in industry, business, and science 
[12]. Neural network emulates the functionality 
of human brains in which the neurons (nerves 
cell) communicate with each other by sending 
messages among them. Artificial neural network 
(ANN) represents the mathematical model of 
these biological neurons. It is a parallel distributed 
information processing structure consisting of a 
number of nonlinear processing units, which can 
be trained to recognize features and to identify 
incomplete data [13]. Neural network has great 
mapping capabilities or pattern association thus 
exhibiting generalization, robustness, high fault 
tolerance, and high speed parallel information 
processing.

          In this work a standard back-propagation 
neural network (NN) is used to estimate the 
exact solution for the following mixed fractional 
differential equation. 

	 (12)

subject to the initial condition

The exact solution, for the special case 

Fig. 1.  Neural network structure.
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Fig. 2. Regressions analysis for t=0.

Fig. 3.  Neural network estimated exact solution v. the exact solution for t=0.
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Fig. 5.  Neural network estimated exact solution v. th exact solution for t=0.1.

Fig. 4. Regressions analysis for t=0.1.
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Fig. 7.  Neural network estimated exact solution v. the exact solution for t=0.1.

Fig. 6. Regressions analysis for t=0.1.



206	 Hamid A. Jalab et al

6.  TRAINING PHASE

The NN is trained to estimate the exact solution. 
The dataset contains 105  exact solutions for 
training,  which are solved numerically for three 
values of t (t=0, t=0.1 and t=0.2), using Eq.(12). In 
the training phase of the NN, the weight matrices 
among the input and the hidden and output layers 
are initialized with random values. After repeatedly 
presenting data of the input samples and desired 
targets, we have compared the output with the 
desired outcome, followed by error measurement 
and weight adjustment. This pattern is repeated until 
the error rate of the output layer reaches a minimum 
value. This process is then repeated for the next 
input value, until all values of the input have been 
processed. The binary-sigmoid activation function 
is used. The value of this function ranges between 0 
and 1. Whereas, the output layer neuron is estimated 
using the activation function that features the linear 
transfer function. The training algorithm used is 
Gradient descent with momentum back propagation. 
The exact solution is solved manually by using the 
giving equation and entered as training input data 
into the NN. The quality of the training sets that 
enters into the network determines efficiency of 
neural network. Fig. 2.4 & 6, show the regressions 
analysis of the trained network for different values 
of t in Eq. (12). The regressions analysis returns the 
correlation coefficient R. This coefficient equals 
to 1 between the output and the target for training; 
thus, both output and target are very close, which 
indicates good fit.

 

7.  RESULTS AND DISCUSSION  

The experimental results are presented to show 
the effectiveness of the proposed neural network. 
The training and testing phases were carried out on 
a 2.33 GHz Intel (R) Core TM 2Duo CPU 4 GB 
RAM on Windows 7 platform using MATLAB 
R2011a. The results of the proposed algorithm in 
this paper are compared with the exact solution. 
Fig. 3.5 and 7, show the estimated neural network 
exact solution (blue line) v. the exact solution (red 
line) for different values of t in Eq. (12). The figures 
show that for all values of t there are almost similar 
estimated exact solution. 

8.  CONCLUSIONS

This paper had proved that the  fractional differential 

equations based on Riemann-Liouville fractional 
derivatives are solved exactly. The solution was 
obtained in terms of H-functions. The solution was 
proved to be finite for all times. Moreover, by using 
the neural network method, the numerical solution 
for some special equations has been estimated. 
The experimantal results have proved that for all 
values of t there are almost similar estimated exact 
solutions. The parallel processing property of 
trained neural network enabled to recognize features 
and to identify incomplete data, which resulted in 
reducing the differences between the estimated and 
the exact solution.
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