Original Article

## A New Class of Harmonic p-Valent Functions of Complex Order

M. K. Aouf, A. A. Shamandy, A. O. Mostafa<sup>3</sup> and A. K. Wagdy\*

Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

**Abstract**: In this paper, we define a class of p-valent harmonic functions and study some results as coefficient inequality, distortion theorem, extreme points, convolution conditions and convex combination.

Keywords and phrases: Harmonic, p-valent, sense-preserving, distortion.

2000 Mathematics Subject Classification: 30C45.

#### 1. INTRODUCTION

A continuous complex-valued function f = u + iv defined in a simply connected complex domain B is said to be harmonic in B if both u and v are real harmonic in B. Let

$$f = h + \bar{g}$$

be defined in any simply connected domain, where h and g are analytic in B. A necessary and sufficient condition for f to be locally univalent and sensepreserving in B is that

$$|h'(z)| > |g'(z)|, z \in B \text{ (see [2])}.$$
 (1.1)

Let H(p) denote the class of functions of the form:

$$f = h + g$$

which are harmonic p-valent in the open unit disc U={  $z:z\in\mathbb{C}$  ,|z|<1}, where

$$h(z) = z^{p} + \sum_{k=p+1}^{\infty} a_{k} z^{k}, g(z) = \sum_{k=p}^{\infty} b_{k} z^{k}$$
$$(|b_{p}| < 1; p \in N = \{1,2,3,\dots\}). (1.2)$$

Let  $\overline{H}(p)$  denote the class of functions of the form:

$$f = h + \bar{g},\tag{1.3}$$

$$h(z) = z^{p} - \sum_{k=p+1}^{\infty} |a_{k}| z^{k}, g(z)$$

$$= \sum_{k=p}^{\infty} |b_{k}| z^{k}, |b_{p}| < 1.$$
(1.4)

For 
$$0 < \beta \le 1$$
,  $p \in N$ ,  $b \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$ ,  $|b| \le 1$ ,  $z' = (\partial/(\partial\theta))(z = re^{i\theta})$ ,  $0 \le r < 1$ ,  $0 \le \theta < 2\pi$  and  $f'(z) = \frac{\partial}{\partial\theta}(f(z))$ , let  $S_H(b, p, \beta)$ , let be the class of hamonic functions  $f(z)$  of the form (1.2) such that

$$\left| \frac{1}{b} \left[ \frac{zf'(z)}{z'f(z)} - p \right] \right| < \beta, \tag{1.5}$$

or, equivalently,

$$\operatorname{Re}\left\{\frac{\operatorname{zf}'(z)}{z'f(z)}\right\} > p - \beta|b|. \tag{1.6}$$

Also, let

$$\bar{S}_H(b,p,\beta) = S_H(b,p,\beta) \cap \overline{H}(p).$$

We note that:

(i) 
$$\bar{S}_H(p-\alpha,p,1) = \text{TH}(p,\alpha)$$
 ( see Ahuja and Jahangiri [1] );

(ii) 
$$\overline{S}_H(\mathbf{b}, 1, \beta) = \overline{H}S^*(\mathbf{b}, \beta)$$
 (see Janteng [4]);

(iii) 
$$\bar{S}_H(1-\alpha, 1,1) = S_H^*(\alpha) \ (0 \le \alpha < 1)$$
  
(see Jahangiri [3]);

(iv) 
$$\bar{S}_H(1-\alpha, 1,1) = S_H^*(0) = T_H^*(see Silverman [5]).$$

Also we note that:

(i) 
$$\bar{S}_{H}((p-\alpha)\cos\lambda e^{-i\lambda}, p, 1) = \overline{S_{H}^{\lambda}}(p, \alpha)$$
  

$$= \left\{ f(z) \in \overline{H}(p) : \operatorname{Re}\left\{ e^{i\lambda} \frac{\operatorname{zf}'(z)}{z'\operatorname{f}(z)} \right\} \right\}$$

$$\geq \alpha \cos\lambda \left( 0 \leq \alpha < p; |\lambda| < \frac{\pi}{2} \right) \right\};$$

(ii) 
$$\bar{S}_H(1, \mathbf{p}, \beta) = \bar{S}_H(\mathbf{p}, \beta)$$
  
=  $\left\{ f(z) \in \bar{H}(p) : \left| \frac{\mathbf{z}\mathbf{f}'(z)}{z'\mathbf{f}(z)} - \mathbf{p} \right| < \beta \right\}$ .

In this paper we introduce a new classes  $S_H(b, p, \beta)$  and  $\bar{S}_H(b, p, \beta)$ . We obtain also the coefficient inequality, distortion theorem, extreme points, convolution conditions and convex combination for functions in the class  $\bar{S}_H(b, p, \beta)$ .

### 2. COEFFICIENT ESTIMATE

Unless otherwise mentioned, we assume throughout this paper that  $0 < \beta \le 1, p \in N, b \in \mathbb{C}^*$ ,  $|b| \le 1, z' = (\partial/(\partial\theta))(z = re^{i\theta}), 0 \le r < 1, 0 \le \theta < 2\pi, f'(z) = (\partial/(\partial\theta))f(z), z \in U$  and f(z) is given by (1.3).

In the following theorem, we obtain the coefficient inequality for functions of the class  $S_H(b, p, \beta)$ .

**Thereom 1.** Let  $f = h + \overline{g}$ , where h and g are given by (1.2). Furthermore, let

$$\begin{split} &\sum_{k=p+1}^{\infty} \frac{k-p+\beta|b|}{\beta|b|} |a_{k}| \\ &+ \sum_{k=p}^{\infty} \frac{k+p-\beta|b|}{\beta|b|} |b_{k}| \leq 1, \end{split} \tag{2.1}$$

then  $f(z) \in S_H(b, p, \beta)$ .

**Proof.** We only need to show that if (2.1) holds then the condition (1.6) is satisfied. Since  $Re \ w > \delta$  if and only if  $|1 - \delta + w| > |1 + \delta - w|$ , it suffices to show that

$$|(1 - p + \beta|b|)z'f(z) + zf'(z)|$$

$$-|(1 + p - \beta|b|)z'f(z) - zf'(z)| > 0.$$

Substituting for z'f(z) and zf'(z), we obtain

$$\begin{split} &|(1-p+\beta|b|)z'f(z)+zf'(z)|\\ &-|(1+p-\beta|b|)z'f(z)-zf'(z)|\\ &=\left|(1+\beta|b|)z^p+\sum_{k=p+1}^{\infty}(k-p+1+\beta|b|)a_kz^k\right|\\ &-\sum_{k=p}^{\infty}(k+p-1-\beta|b|)b_k\bar{z}^k\right|\\ &-\left|(1-\beta|b|)z^p-\sum_{k=p+1}^{\infty}(k-p-1+\beta|b|)a_kz^k\right|\\ &+\sum_{k=p}^{\infty}(k+p+1-\beta|b|)b_k\bar{z}^k\right|\\ &\geq (1+\beta|b|)|z|^p-\sum_{k=p+1}^{\infty}(k-p+1+\beta|b|)|a_k||z|^k\\ &-\sum_{k=p}^{\infty}(k+p-1-\beta|b|)|b_k||z|^k\\ &-(1-\beta|b|)|z|^p-\sum_{k=p+1}^{\infty}(k-p-1+\beta|b|)|a_k||z|^k\\ &-\sum_{k=p}^{\infty}(k+p+1-\beta|b|)|b_k||z|^k\\ &=2\beta|b||z|^p-2\sum_{k=p+1}^{\infty}(k-p+\beta|b|)|a_k||z|^k\\ &-2\sum_{k=p}^{\infty}(k+p-\beta|b|)|b_k||z|^k\\ &>2\beta|b|\left\{1-\sum_{k=p+1}^{\infty}\frac{k-p+\beta|b|}{\beta|b|}|a_k|\\ &-\sum_{k=p}^{\infty}\frac{k+p-\beta|b|}{\beta|b|}|b_k|\right\}. \end{split}$$

This last expression is non-negative by (2.1), which completes the proof of Theorem 1. The harmonic p-valent function

$$f(z) = z^{p} + \sum_{k=p+1}^{\infty} \frac{\beta |b|}{k - p + \beta |b|} X_{k} z^{k}$$
$$+ \sum_{k=p}^{\infty} \frac{\beta |b|}{k + p - \beta |b|} \overline{Y_{k} z^{k}},$$
(2.3)

where  $\sum_{k=p+1}^{\infty} |X_k| + \sum_{k=p}^{\infty} |Y_k| = 1$ , show that the coefficient bound given by (2.1) is sharp. This is because

$$\begin{split} \sum_{k=p+1}^{\infty} \frac{k-p+\beta|b|}{\beta|b|} |a_k| + \sum_{k=p}^{\infty} \frac{k+p-\beta|b|}{\beta|b|} |b_k| \\ &= \sum_{k=p+1}^{\infty} \frac{k-p+\beta|b|}{\beta|b|} \cdot \frac{\beta|b|}{k-p+\beta|b|} |X_k| \\ &+ \sum_{k=p}^{\infty} \frac{k+p-\beta|b|}{\beta|b|} \cdot \frac{\beta|b|}{k+p-\beta|b|} |Y_k| \\ &= \sum_{k=p+1}^{\infty} |X_k| + \sum_{k=p}^{\infty} |Y_k| = 1. \end{split}$$

Now, we need to prove that the condition (2.1) is also necessary for functions of the form (1.3) to be in the class  $\bar{S}_H(b, p, \beta)$ .

**Thereom 2.** Let  $f = h + \overline{g}$ , where h and g are given by (1.4). then  $f(z) \in \overline{S}_H(b, p, \beta)$  if and only if

$$\sum_{k=p+1}^{\infty} \frac{k-p+\beta|b|}{\beta|b|} |a_k| + \sum_{k=p}^{\infty} \frac{k+p-\beta|b|}{\beta|b|} |b_k| \le 1.$$
 (2.4)

**Proof.** Since  $\bar{S}_H(b, p, \beta) \subset S_H(b, p, \beta)$ , we only need to prove the "only if" part of this theorem. Let  $f(z) \in \bar{S}_H(b, p, \beta)$ , then

$$\operatorname{Re}\left\{\frac{\operatorname{zf}'(\operatorname{z})}{\operatorname{z}'\operatorname{f}(\operatorname{z})}\right\} > p - \beta|\operatorname{b}|,$$

that, is that

$$\operatorname{Re}\left\{\frac{zf'(z) - (p - \beta|b|)z'f(z)}{z'f(z)}\right\} = \operatorname{Re}\left\{\frac{\beta|b|z^{p} - \sum_{k=p+1}^{\infty} (k-p+\beta|b|)a_{k}z^{k} - \sum_{k=p}^{\infty} (k+p-\beta|b|)b_{k}\bar{z}^{k}}{z^{p} - \sum_{k=p+1}^{\infty} a_{k}z^{k} + \sum_{k=p}^{\infty} b_{k}\bar{z}^{k}}\right\} > 0. \quad (2.5)$$

By choosing the values of z on the positive real axis where  $0 \le z = r < 1$ , we have

$$\frac{\beta|b| - \sum_{k=p+1}^{\infty} (k-p+\beta|b|) a_k - \sum_{k=p}^{\infty} (k+p-\beta|b|) b_k}{z^p - \sum_{k=p+1}^{\infty} a_k + \sum_{k=p}^{\infty} b_k} \ge 0. \quad (2.6)$$

If the condition (2.4) does not hold, then the numerator in (2.6) is negative for  $r \rightarrow 1$ . This contradicts (2.6), then the proof of Theorem 2 is completed.

Putting p = 1 in Theorem 2, we obtain the following corollary:

**Corollary 1.** Let  $f = h + \overline{g}$ , where h and g are given by (1.4). Then  $f(z) \in \overline{HS}^*(b, \beta)$  if and only if

$$\sum_{k=2}^{\infty} \frac{k-1+\beta|b|}{\beta|b|} |a_k| + \sum_{k=1}^{\infty} \frac{k+1-\beta|b|}{\beta|b|} |b_k| \le 1. \quad (2.7)$$

Putting  $b = (p - \alpha)cos\lambda e^{-i\lambda}$   $(0 \le \alpha < p, |\lambda| < \frac{\pi}{2})$  and  $\beta = 1$  in Theorem 2, we obtain the following corollary:

**Corollary 2.** Let  $f = h + \overline{g}$ , where h and g are given by (1.4). Then  $f(z) \in \overline{S_H^{\lambda}}(p, \alpha)$  if and only if

$$\sum_{k=p+1}^{\frac{k-p+(p-\alpha)cos\lambda}{(p-\alpha)cos\lambda}} |a_k|$$

$$+\sum_{k=p}^{\infty} \frac{k+p-(p-\alpha)\cos\lambda}{(p-\alpha)\cos\lambda} |b_k| \le 1.$$
 (2.8)

# 3. SOME PROPERTIES FOR THE CLASS $\bar{S}_{H}(b, p, \beta)$

Distortion bounds for the class  $\bar{S}_H(b, p, \beta)$  are given in the following theorem.

**Thereom 3.** Let the function f(z) given by (1.3) be in the class  $\bar{S}_H(b, p, \beta)$ . Then for |z| = r < 1, we have

$$|f(z)| \le \left(1 + |b_p|\right)r^p + \left(\frac{\beta|b|}{1 + \beta|b|} - \frac{2p - \beta|b|}{1 + \beta|b|}|b_p|\right)r^{p+1}$$
(3.1)

and

$$|f(z)| \ge (1 - |b_p|)r^p - (\frac{\beta|b|}{1 + \beta|b|} - \frac{2p - \beta|b|}{1 + \beta|b|}|b_p|)r^{p+1}.$$
 (3.2)

The equalities in (3.1) and (3.2) are attained for the

functions f(z) given by

$$f(z) = \left(1 + b_p\right)\bar{z}^p + \left(\frac{\beta|b|}{1 + \beta|b|} - \frac{2p - \beta|b|}{1 + \beta|b|}b_p\right)\bar{z}^{p+1}$$

and

$$f(z) = \left(1-b_p\right)\bar{z}^p - \left(\frac{\beta|b|}{1+\beta|b|} - \frac{2p-\beta|b|}{1+\beta|b|}b_p\right)\bar{z}^{p+1}.$$

**Proof.** Let  $f(z) \in \overline{S}_H(b, p, \beta)$ . Then we have

$$\begin{split} |f(z)| &\leq r^{p} + \sum_{k=p+1}^{\infty} |a_{k}| r^{k} + \sum_{k=p}^{\infty} |b_{k}| r^{k} \\ &\leq (1 + |b_{p}|) r^{p} + r^{p+1} \sum_{k=p+1}^{\infty} (|a_{k}| + |b_{k}|) \end{split}$$

$$= (1 + |b_{p}|)r^{p} + \frac{\beta|b|}{1 + \beta|b|} \sum_{k=p+1}^{\infty} \left( \frac{1 + \beta|b|}{\beta|b|} |a_{k}| + \frac{1 + \beta|b|}{\beta|b|} |b_{k}| \right) r^{p+1}$$

$$\leq (1 + |b_{p}|)r^{p} + \frac{\beta|b|}{1 + \beta|b|} \sum_{k=p+1}^{\infty}$$

$$\left(\frac{k-p+\beta|b|}{\beta|b|}|\mathbf{a}_{\mathbf{k}}| + \frac{k+p-\beta|b|}{\beta|b|}|\mathbf{b}_{\mathbf{k}}|\right)r^{p+1}$$

$$\leq \left(1+\left|\mathbf{b}_{\mathbf{p}}\right|\right)r^{p}+\frac{\beta|b|}{1+\beta|b|}\left(1-\frac{2p-\beta|b|}{\beta|b|}\left|\mathbf{b}_{\mathbf{p}}\right|\right)r^{p+1}$$

$$= \left(1 + \left|\mathbf{b}_{\mathbf{p}}\right|\right) r^{p} + \left(\frac{\beta |\mathbf{b}|}{1 + \beta |\mathbf{b}|} - \frac{2p - \beta |\mathbf{b}|}{1 + \beta |\mathbf{b}|} \left|\mathbf{b}_{\mathbf{p}}\right|\right) r^{p+1}.$$

Similarly, we can prove the left-hand inequality, where

$$|f(z)| \ge r^p - \sum_{k=p+1}^{\infty} |a_k| r^k - \sum_{k=p}^{\infty} |b_k| r^k.$$
 (3.3)

This completes the proof of Theorem 3.

Putting p = 1 in Theorem 3, we obtain the following corollary:

**Corollary 3.** Let the function f(z) given by (1.3) be in the class  $\overline{H}S^*(b,\beta)$ . Then for |z|=r<1, we have

$$|f(z)| \le (1+|b_1|)r + \left(\frac{\beta|b|}{1+\beta|b|} - \frac{2-\beta|b|}{1+\beta|b|}|b_1|\right)r^2 \ \ (3.4)$$

and

$$|f(z)| \ge (1 - |b_1|)r - \left(\frac{\beta|b|}{1 + \beta|b|} - \frac{2 - \beta|b|}{1 + \beta|b|}|b_1|\right)r^2.$$
 (3.5)

The equalities in (3.4) and (3.5) are attained for the functions f(z) given by

$$f(z) = (1 + b_1)\bar{z} + \left(\frac{\beta|b|}{1 + \beta|b|} - \frac{2 - \beta|b|}{1 + \beta|b|}b_1\right)\bar{z}^2$$

and

$$f(z) = (1 - b_1)\bar{z} - \left(\frac{\beta |b|}{1 + \beta |b|} - \frac{2 - \beta |b|}{1 + \beta |b|} b_1\right)\bar{z}^2.$$

Putting  $b = (p - \alpha)cos\lambda e^{-i\lambda}$   $(0 \le \alpha < p, |\lambda| < \frac{\pi}{2})$  and  $\beta = 1$  in Theorem 3, we obtain the following corollary:

**Corollary 4.** Let the function f(z) given by (1.3) be in the class  $S_H^{\lambda}(p, \alpha)$ . Then for |z| = r < 1, we have

$$f(z)| \le \left(1 + \left|b_p\right|\right) r^p$$

$$+ \left(\frac{(p-\alpha)\cos\lambda}{1 + (p-\alpha)\cos\lambda} - \frac{2p - (p-\alpha)\cos\lambda}{1 + (p-\alpha)\cos\lambda} |b_p|\right) r^{p+1}$$
and
$$(3.6)$$

$$|f(z)| \ge \left(1 - |b_p|\right) r^p - \left(\frac{(p-\alpha)\cos\lambda}{1 + (p-\alpha)\cos\lambda} - \frac{2p - (p-\alpha)\cos\lambda}{1 + (p-\alpha)\cos\lambda} |b_p|\right) r^{p+1}.$$
(3.7)

The equalities in (3.6) and (3.7) are attained for the functions f(z) given by

$$f(z) = \left(1 + b_p\right)\bar{z}^p + \left(\frac{(p - \alpha)cos\lambda}{1 + (p - \alpha)cos\lambda} - \frac{2p - (p - \alpha)cos\lambda}{1 + (p - \alpha)cos\lambda}b_p\right)\bar{z}^{p+1}$$

and

$$f(z) = \left(1 - b_p\right)\bar{z}^p - \left(\frac{(p - \alpha)cos\lambda}{1 + (p - \alpha)cos\lambda} - \frac{2p - (p - \alpha)cos\lambda}{1 + (p - \alpha)cos\lambda}b_p\right)\bar{z}^{p + 1}$$

Our next theorem is on the extreme points of convex hulls of the class  $\bar{S}_H(b, p, \beta)$  denoted by  $cloo \bar{S}_H(b, p, \beta)$ .

**Thereom 4.** Let f(z) be given by (1.3). Then  $f \in \overline{S}_H(b, p, \beta)$  if and only if  $f(z) = \sum_{k=p}^{\infty} (X_k h_k + Y_k g_k)$ , where

$$h_p(z) = z^p, h_k(z)$$

$$= z^p - \frac{\beta |b|}{k - p + \beta |b|} z^k \ (k = p + 1, p + 2, ...), \tag{3.8}$$

and

$$g_{k}(z) = z^{p} + \frac{\beta |b|}{k + p - \beta |b|} \bar{z}^{k} (k = p, p + 1, ...)$$

$$\left(X_{k} \ge 0; Y_{k} \ge 0; \sum_{k=p}^{\infty} (X_{k} + Y_{k}) = 1\right).$$
(3.9)

**Proof.** Let

$$f(z) = \sum_{k=p}^{\infty} (X_k h_k + Y_k g_k)$$

$$= \sum_{k=p}^{\infty} (X_k + Y_k) z^p - \sum_{k=p+1}^{\infty} \frac{\beta |b|}{k - p + \beta |b|} X_k z^k$$

$$+ \sum_{k=p}^{\infty} \frac{\beta |b|}{k + p - \beta |b|} \overline{Y_k z^k}$$

$$= z^{p} - \sum_{k=p+1}^{\infty} \frac{\beta |b|}{k - p + \beta |b|} X_{k} z^{k}$$

$$+ \sum_{k=p}^{\infty} \frac{\beta |b|}{k + p - \beta |b|} Y_{k} \overline{z}^{k}.$$
(3.10)

Using (2.4), we get

$$\sum_{k=p+1}^{\infty} \frac{k-p+\beta|b|}{\beta|b|} |a_k| + \sum_{k=p}^{\infty} \frac{k+p-\beta|b|}{\beta|b|} |b_k|$$

$$= \sum_{k=p+1}^{\infty} \frac{k-p+\beta|b|}{\beta|b|} \cdot \frac{\beta|b|}{k-p+\beta|b|} X_k$$

$$+ \sum_{k=p}^{\infty} \frac{k+p-\beta|b|}{\beta|b|} \cdot \frac{\beta|b|}{k+p-\beta|b|} Y_k$$

$$= \sum_{k=p+1}^{\infty} X_k + \sum_{k=p}^{\infty} Y_k = \sum_{k=p}^{\infty} (X_k + Y_k) - X_p \le 1,$$

then  $f \in \overline{S}_H(b, p, \beta)$ .

Conversely, if  $f \in \overline{S}_H(b, p, \beta)$ , let

$$|\mathbf{a}_k| = \frac{\beta |b|}{k - p + \beta |b|} X_k (k = p + 1, p + 2, ...)$$
 (3.11)

and

$$|\mathbf{b}_{k}| = \frac{\beta |b|}{k + p - \beta |b|} Y_{k} (k = p, p + 1,...),$$
 where  $\sum_{k=p}^{\infty} (X_{k} + Y_{k}) = 1$ . Then, we have

$$f(z) = z^p - \sum_{k=p+1}^{\infty} |a_k| z^k + \sum_{k=p}^{\infty} |b_k| \bar{z}^k;$$

$$=z^p-\sum_{\mathrm{k=p+1}}^{\infty}\frac{\beta|b|}{k-p+\beta|b|}X_k\,z^k+\sum_{\mathrm{k=p}}^{\infty}\frac{\beta|b|}{k+p-\beta|b|}Y_k\,\bar{z}^k$$

$$= z^{p} + \sum_{k=p+1}^{\infty} (h_{k}(z) - z^{p}) X_{k} + \sum_{k=p}^{\infty} (g_{k}(z) - z^{p}) Y_{k}$$

$$=\sum_{k=p}^{\infty}(X_kh_k+Y_kg_k).$$

This completes the proof of Theorem 4.

Putting p = 1 in Theorem 4, we obtain the following corollary:

**Corollary 5.** Let f(z) be given by (1.3) with p = 1. Then  $f \in \overline{HS}^*(b, \beta)$  if and only if  $f(z) = \sum_{k=1}^{\infty} (X_k h_k + Y_k g_k)$ , where

$$h_1(z) = z, h_k(z) = z - \frac{\beta |b|}{k - 1 + \beta |b|} z^k (k = 2, 3, ...), (3.13)$$

and

$$g_k(z) = z + \frac{\beta |b|}{k + 1 - \beta |b|} \overline{z}^k \ (k = 1, 2, ...)$$

$$\left(X_k \ge 0; Y_k \ge 0; \sum_{k=1}^{\infty} (X_k + Y_k) = 1\right).$$
 (3.14)

Putting  $b = (p - \alpha)cos\lambda e^{-i\lambda}$   $(0 \le \alpha < p, |\lambda| < \frac{\pi}{2})$  and  $\beta = 1$  in Theorem 4, we obtain the following corollary:

**Corollary 6.** Let f(z) be given by (1.3). Then  $f \in \overline{S_H^{\lambda}}(p, \alpha)$  if and only if  $f(z) = \sum_{k=p}^{\infty} (X_k h_k + Y_k g_k)$ , where

$$h_{p}(z) = z^{p}, h_{k}(z)$$

$$= z^{p} - \frac{(p-\alpha)\cos\lambda}{k-p+(p-\alpha)\cos\lambda} z^{k} \quad (k=p+1,p+2,...), \quad (3.15)$$
and
$$g_{k}(z) = z^{p} + \frac{(p-\alpha)\cos\lambda}{k+p-(p-\alpha)\cos\lambda} \bar{z}^{k} \quad (k=p,p+1,...)$$

$$\left(X_k \ge 0; Y_k \ge 0; \sum_{k=p}^{\infty} (X_k + Y_k) = 1\right). \tag{3.16}$$

For harmonic functions of the form:

$$f(z) = z^{p} - \sum_{k=p+1}^{\infty} |a_{k}| z^{k} + \sum_{k=p}^{\infty} |b_{k}| \overline{z}^{k}$$
 (3.17)

and

$$F(z) = z^{p} - \sum_{k=p+1}^{\infty} |A_{k}| z^{k} + \sum_{k=p}^{\infty} |B_{k}| \overline{z}^{k}, \quad (3.18)$$

we define the convolution of two harmonic functions f and F by

$$(f * F)(z) = z^p - \sum_{k=p+1}^{\infty} |a_k A_k| z^k + \sum_{k=p}^{\infty} |b_k B_k| \overline{z}^k.$$
 (3.19)

**Thereom 5.** For  $0 < \gamma \le \beta \le 1$ , let  $f \in \overline{S}_H(b, p, \beta)$  and  $F \in \overline{S}_H(b, p, \gamma)$ . Then  $f * F \in \overline{S}_H(b, p, \beta) \subset \overline{S}_H(b, p, \gamma)$ .

**Proof.** Let the convolution f \* F be of the form (3.19), then we want to prove that the coefficient of f \* F satisfy the condition of Theorem 2. Since  $F \in \overline{S}_H(b, p, \gamma)$  we note that  $|A_k| \le 1$  and  $|B_k| \le 1$ . Then we have

$$\sum_{k=p+1}^{\infty} \frac{k-p+\gamma|b|}{\gamma|b|} |a_k A_k| + \sum_{k=p}^{\infty} \frac{k+p-\gamma|b|}{\gamma|b|} |b_k B_k|$$

$$\leq \sum_{k=p+1}^{\infty} \frac{k-p+\gamma|b|}{\gamma|b|} |a_k| + \sum_{k=p}^{\infty} \frac{k+p-\gamma|b|}{\gamma|b|} |b_k|$$

$$\leq \sum_{k=p+1}^{\infty} \frac{k-p+\beta|b|}{\beta|b|} |a_{k}| + \sum_{k=p}^{\infty} \frac{k+p-\beta|b|}{\beta|b|} |b_{k}| \leq 1, \qquad = \sum_{i=1}^{\infty} c_{i} \left( \sum_{k=p+1}^{\infty} \frac{k-p+\beta|b|}{\beta|b|} |a_{k,i}| \right)$$

since  $0 < \gamma \le \beta \le 1$  and  $f \in \overline{S}_H(b, p, \beta)$ . Therefore  $f * F \in \overline{S}_H(b, p, \beta) \subset \overline{S}_H(b, p, \gamma)$ , which completes the proof of Theorem 5. Now we want to prove that the class  $\bar{S}_H(b, p, \beta)$  is closed under convex combinations.

**Thereom 6.** Let  $0 \le c_i \le 1$  for i = 1, 2, ... and  $\sum_{i=1}^{\infty} c_i = 1$ . If the functions  $f_i(z)$  defined by

$$f_{i}(z) = z^{p} - \sum_{k=p+1}^{\infty} |a_{k,i}| z^{k}$$

$$+ \sum_{k=p}^{\infty} |b_{k,i}| \overline{z}^{k} (z \in U; i = 1,2,3,...), \quad (3.20)$$

are in the class  $\bar{S}_H(b, p, \beta)$  for every i = 1, 2, 3, ..., then  $\sum_{i=1}^{\infty} c_i f_i(z)$  of the form

$$\sum_{i=1}^{\infty} c_i f_i(z) = z^p - \sum_{k=p+1}^{\infty} \left( \sum_{i=1}^{\infty} c_i \left| \mathbf{a}_{k,i} \right| \right) z^k$$

$$+ \sum_{k=p}^{\infty} \left( \sum_{i=1}^{\infty} c_i \left| \mathbf{b}_{k,i} \right| \right) \overline{z}^k$$
(3.21)

is in the class  $\bar{S}_H(b, p, \beta)$ .

**Proof.** Since  $f_i(z) \in \overline{S}_H(b, p, \beta)$ , it follows from Theorem 2 that

$$\sum_{k=p+1}^{\infty} \frac{k-p+\beta|b|}{\beta|b|} |a_{k,i}|$$

$$+ \sum_{k=p+1}^{\infty} \frac{k+p-\beta|b|}{\beta|b|} |b_{k,i}| \le 1,$$
(3.22)

for every i = 1,2,3,... Hence

$$\sum_{k=p+1}^{\infty} \left( \frac{k-p+\beta|b|}{\beta|b|} \sum_{i=1}^{\infty} c_i |a_{k,i}| \right)$$

$$+ \sum_{k=p}^{\infty} \left( \frac{k+p-\beta|b|}{\beta|b|} \sum_{i=1}^{\infty} c_i |b_{k,i}| \right)$$

$$= \sum_{i=1}^{\infty} c_i \left( \sum_{k=p+1}^{\infty} \frac{k-p+\beta|b|}{\beta|b|} |a_{k,i}| \right)$$

$$+\sum_{k=p}^{\infty} \frac{k+p-\beta|b|}{\beta|b|} |b_{k,i}| \right) \leq \sum_{i=1}^{\infty} c_i \leq 1.$$

By Theorem 2, it follows that  $\sum_{i=1}^{\infty} c_i f_i(z) \in \bar{S}_H(b, p, \beta)$ . This proves that  $\bar{S}_H(b, p, \beta)$  is closed under convex combinations.

**Remarks.** (i) The results in Corollaries 1, 3 and 5, respectively, correct the results obtained by Janteng [4, Theorem 2.1, 2.2 and 2.3, respectively];

(ii) Putting b = 1 in the above results, we obtain the corresponding results for the class  $\bar{S}_H(p, \beta)$ .

#### 4. **REFERENCES**

- 1. Ahuja O. P. & J. M. Jahangiri. Multivalent harmonic starlike functions. *Ann. Univ. Mariae Curie-Sklodowska*, *Sect. A* 55 (no. 1): 1-13 (2001).
- Clunie, J. & T. Shell-Small. Harmonic univalent functions. *Ann. Acad. Sci. Fenn. Ser. A. I. Math.* 9: 3-25 (1984).
- 3. Jahangiri, J. M. Harmonic functions starlike in the unit disc. *J. Math. Anal. Appl.* 235: 470-477 (1999).
- 4. Janteng, A. Starlike functions of complex order. *Appl. Math. Sci.* 3 (no. 12): 557-564 (2009).
- 5. Silverman, H. Harmonic univalent functions with negative coefficients. *J. Math. Anal. Appl.* 220 (no. 1): 283-289 (1998).