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Abstract: In this paper, we consider the Hyers-Ulam stability for the following fractional differential 
equations in sense of Srivastava-Owa fractional operators (derivative and integral) defined in the unit disk:

in a complex Banach space. Furthermore, a generalization of the admissible functions in complex Banach 
spaces is imposed and applications are illustrated.
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1.   INTRODUCTION

 A classical problem in the theory of functional 

equations is that: If a function f  approximately 

satisfies functional equation E  when does there 

exists an exact solution of E  which f  approximates. 

In 1940, S. M. Ulam [1] imposed the question of 

the stability of Cauchy equation and in 1941, D. 

H. Hyers solved it [2]. In 1978, Th. M. Rassias 

[3] provided a generalization of Hyers theorem by 

proving the existence of unique linear mappings near 

approximate additive mappings. The problem has 

been considered for many different types of spaces 

(see [4-6]). Recently, Li and Hua [7] discussed 

and proved the Hyers-Ulam stability of spacial 

type of finite polynomial equation, and Bidkham, 
Mezerji and Gordji [8] introduced the Hyers-Ulam 

stability of generalized finite polynomial equation. 
Finally, M.J. Rassias [9] imposed a Cauchy type 

additive functional equation and investigated the 

generalised Hyers-Ulam “product-sum” stability of 

this equation.

	 Fractional calculus can be considered as a 

generalization of classical calculus. Fractional 

differential equations have many applications in 

various area not only in mathematics but also in 

physics, computer sciences, mechanics and others. 

Stability analysis of the solution for these equations 

is a main central task in the study of fractional 

analysis. The authors and researchers investigated 

the stability for different kind of fractional 

derivatives such as Caputo derivatives, Miller-

Ross sequential derivative and Riemann-Liouville 

derivative.

	 In this note, we shall study the stability of 

complex differential equation in sense of the 

Srivastava-Owa fractional operators (derivative 

and integral). The solutions are univalent in the unit 

disk. Recently, the author suggested and introduced 

the generalized Ulam stability for various types 

of fractional differential equations in the complex 

domain [10-14]. Furthermore, Ulam stability for 

fractional differential equations can be found in 

[15-17].



228	 Rabha W. Ibrahim

2.  METHODS

Let  be the open unit disk in 

the complex plane C  and H  denote the space of 

all analytic functions on U . Here we suppose that 

H  as a topological vector space endowed with the 
topology of uniform convergence over compact 

subsets of U. Also for C∈a  and N∈m  , let ],[ maH  

be the subspace of H  consisting of functions of the 
form 

.,=)( 1
1 Uzzazaazf m

m
m

m ∈+++ +
+ 

Let A  be the class of functions ,f  analytic in U  and 

normalized by the conditions 0.=1(0)=(0) −′ff  

A function A∈f  is called univalent )(S  if it is 

one-one in .U  A function A∈f  is called convex 
if it satisfies the following inequality 

We denoted this class .C
	 In [18], Srivastava and Owa, posed definitions 
for fractional operators (derivative and integral) in 

the complex z-plane C  as follows:

Definition 2.1. The fractional derivative of order 

α  is defined, for a function )(zf  by 

where the function )(zf  is analytic in simply-

connected region of the complex z-plane C  
containing the origin and the multiplicity of 

αζ −− )(z  is removed by requiring )( ζ−zlog  to 

be real when 0.>)( ζ−z
Definition 2.2 The fractional integral of order 

0>α  is defined, for a function ),(zf  by 

where the function )(zf  is analytic in simply-

connected region of the complex z-plane )(C  
containing the origin and the multiplicity of 

1)( −− αζz  is removed by requiring )( ζ−zlog  to 

be real when 0.>)( ζ−z

Remark 2.1 

and 

More details on fractional derivatives and their 
properties and applications can be found in 
[19,20].

	 We next introduce the generalized Hyers-
Ulam stability depending on the properties of the 
fractional operators.

Definition 2.3 Let p  be a real number. We say 
that 

)(=
0=

zfza n
n

n

α+
∞

∑ 	 (1)

has the generalized Hyers-Ulam stability if there 

exists a constant 0>K  with the following 
property:

for every 
 
if 

)
2

||
(||

0=0=
n

p
n

n

n
n

n

awa ∑∑
∞

+
∞

≤ εα

then there exists some Uz∈  that satisfies equation 
(1) such that 

,|| Kwz ii ε≤−

).,,( N∈∈ iUwz
  In the present paper, we study the generalized 
Hyers-Ulam stability for holomorphic solutions 
of the fractional differential equation in complex 

Banach spaces X  and Y  

	

(2)

where YUXG →×2:  and XUf →:  are 

holomorphic functions such that Θ=(0)f  (Θ  is 

the zero vector in X ).

3.  RESULTS
In this section we present extensions of the 
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generalized Hyers-Ulam stability to holomorphic 

vector-valued functions. Let YX ,  represent 
complex Banach space. The class of admissible 
functions  consists of those functions 

YUXg →×2:  that satisfy the admissibility 
conditions: 

	

(3)

 

1).,( ≥∈ kUz
We need the following results:

Lemma 3.1. [21] If XDf →:  is holomorphic, 

then f  is a subharmonic of .C⊂∈Dz  It 

follows that f  can have no maximum in D  

unless f  is of constant value throughout .D

Lemma 3.2. [22, p. 88] If the function )(zf  is in 

the class ,S  then 

1).<{0};0:=;( 0 α≤∪∈∈ NNnUz

Lemma 3.3. [18, p. 225] If the function )(zf  is in 

the class ,C  then 

1).<;0;( 0 α≤∈∈ NnUz

Theorem 3.1. Let ),( YXG G∈  and XUf →:  
be a holomorphic vector-valued function defined in 
the unit disk ,U  with .=(0) Θf  If ,S∈f  then 

	
(4)

Proof. Since ,S∈f  then from Lemma 3.2, we 
observe that

Assume that f dose not satisfie  )(zf <1 for 

.Uz∈  Thus, there exists a point Uz ∈0  for which 

1.=)( 0zf  According to Lemma 3.1, we have 

and 

Consequently, we obtain 

We put 

 

for some 1<<0 α  

and ;Uz∈  hence from equation (3), we deduce 

which contradicts the hypothesis in (4), we must 

have 1.f <

Corollary 3.1. Assume the problem (2). If 

),( YXG G∈  is a holomorphic univalent vector-

valued function defined in the unit disk U  then 

	
(5)

Proof. By univalency of ,G  the fractional differential 
equation (2) has at least one holomorphic univalent 

solution .f  Thus according to Remark 1.1, the 

solution )(zf  of the problem (2) takes the form 

Therefore, in virtue of Theorem 3.1, we obtain the 
assertion (5).

Theorem 3.2. Let ),( YXG G∈  be holomorphic 
univalent vector-valued functions defined in the unit 
disk U  then the equation (2) has the generalized 

Hyers-Ulam stability for .Uz ∂→

Proof. Assume that 

therefore, by Remark 1.2, we have 
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Also, Uz ∂→  and thus 1.|| →z  According to 
Theorem 3.1, we have 

Let 0>ε  and Uw∈  be such that 

We will show that there exists a constant K  
independent of ε  such that 

UuUwKuw ii ∈∈≤− ,,|| ε
and satisfies (1). We put the function
 

	

(6)

thus, for ,Uw ∂∈  we obtain 

Without loss of generality, we consider 

 
 yielding 

This completes the proof.

	 In the same manner of Theorem 3.1, and by 
using Lemma 3.3, we have the following result:

  Theorem 3.3. Let ),( YXG G∈  and XUf →:  
be a holomorphic vector-valued function defined in 
the unit disk ,U  with .=(0) Θf  If ,C∈f  then 

 	
(7)

4.  APPLICATIONS
 In this section, we introduce some applications of 
functions to achieve the generalized Hyers-Ulam 

stability.

Example 4.1. Consider the function 

R→×UXG 2:

by 

+∈++ RnzbsrazsrG n ,||)(=);,( 2

with 0.5,≥a  0≥b  and 0.=,0),( ΘΘG  Our aim 
is to employ Theorem 3.1, this holds because 

when 
 
Thus by Theorem 

3.1, yields : If 0.5,≥a  0≥b  and XUf →:  
is a holomorphic univalent vector-valued function 

defined in ,U  with ,=(0) Θf  then 

Consequently,  thus 

in view of Theorem 3.2, f  has the generalized 
Hyers-Ulam stability.

Example 4.2. Assume the function XXG →2:  
by 

with .=),( ΘΘΘG  By applying Theorem 3.1, we 
need to show that  Since 

when 
 

Therefore by 

Theorem 3.1 implies : For XUf →:  is a 
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holomorphic univalent vector-valued function 

defined in ,U  with ,=(0) Θf  then, 

1.<)(

1<)(
1)(

zf

ezf
mzfzD ⇒−α

Consequently,  thus 

in view of Theorem 3.2, f  has the generalized 
Hyers-Ulam stability.

Example 4.3. Let C→Uba :,  satisfy 

for every 1>1, νµ ≥  and .Uz∈  Consider the 

function YXG →2:  by 

,)()(=);,( szbrzazsrG µ+

with .=),( ΘΘΘG  Now for   we 
have 

and thus  If XUf →:  is a 
holomorphic univalent vector-valued function 

defined in ,U  with ,=(0) Θf  then 

According to Theorem 3.2, f  has the generalized 
Hyers-Ulam stability.

Example 4.4. Let C→U:λ  be a function such 
that 

for every .Uz∈  Consider the function YXG →2:  
by 

,
)(

=);,(
z

srzsrG
λ

+

with .=),( ΘΘΘG  Now for  we 
have 

and thus  If XUf →:  is a 
holomorphic univalent vector-valued function 

defined in ,U  with ,=(0) Θf  then 

Hence in view of Theorem 3.2, f  has the 
generalized Hyers-Ulam stability.

5.  CONCLUSIONS
Ulam stability of fractional differential equation is 
defined and studied.  The applications are imposed 
by employing the concept of addimisible functions 
in the unit disk. This class of functions is generalized 
to include the fractional differential operator in 
sense of the Srivastaava-Owa operators. 
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