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Abstract: Prescott et al. (Technometrics 78: 268-276, 1993) proposed D-optimal orthogonally blocked 
designs in two blocks for Scheffé’s quadratic mixture model with four components. Chan and Sandhu 
(J.Appl.Statist.26 (1):19-34, 1999) discussed the properties of D-, A- and E-optimal designs for 
Scheffe’s quadratic mixture model in three components. Prescott (Comm.Stat.Theory Methods, 
27(10):2259-2580, 1998) introduced nearly D-optimal orthogonally blocked designs for Scheffé’s 
quadratic mixture model in three and four components. In this paper, we propose nearly A- and E-
optimal orthogonally blocked designs in two blocks for Scheffé’s quadratic mixture model, in three 
components. The robustness of nearly optimal orthogonally blocked designs, with respect to D-, A- 
and E-optimality criteria, is checked. 
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1. INTRODUCTION 
 

In mixture experiments with q components the 
proportion of ingredients may be denoted by  
x1, x2, ...., xq where  ix  ≥ 0 for i = 1,2,…,q and  
x1 + x2 + .... xq = 1. The response depends only 
on the mixture and not on the total amount of 
mixture. The factor space is a (q-1) - 
dimensional regular simplex  Sq-1, 

Sq-1 = { x  : (x1, x2, ...., xq) | 
1

q

i
i

x
=
∑ = 1, xi ≥ 0 } 

Scheffé [1-2] introduced the model for mixture 
experiments. Scheffé’s quadratic mixture model 
for experiments with mixtures is given by: 
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During practical situation we face some other 
sources of variations which are not part of the 
mixture but may affect the response. Such 
sources are tackled by making the orthogonal 
blocks of runs, which allow the mixture model 
parameters to be estimated independently from 
block effects. Orthogonal blocking conditions 
were derived by Nigam [3] and were further 
modified by John [4]. In terms of blocking 
variable zu the Scheffé’s quadratic mixture 
model is given by, 

1 1

q q

u i iu ij iu ju u u
i i j q

Y x x x z eβ β γ
= ≤ < ≤

= + + +∑ ∑             

u = 1,2,…,n 
 
where zu  = -1 for the blends in the first block and 
zu  =  +1 for the blends in second block. eu  is the 
error term which is assumed to be normal with 
zero mean and common variance σ 2 .In matrix 
form the model can be written as, 

E (y) = Xβ + γz  (1.1)  

where X is the ( 1) / 2n q q× +  matrix related to 
the mixture part, β  is the ( 1) / 2 1q q + ×  column 
vector of unknown parameters,  γ  is the block 
effect parameter,  y is  the 1n× column vector of 
observations and z is the  1n×  column vector 
corresponding to blocking variable zu. The two 
blocks of mixture blends will be orthogonal 
when the block effects do not affect the estimate 
of the coefficients in the mixture model. It will 
be true only when X′z = 0, that is the following 
conditions proposed by John [4] are satisfied. 

1 1
, 1, 2

w wn n

iu i iu ju ij
u u

x k x x k w
= =

= = ∀ =∑ ∑  (1.2) 

where ik  and ijk are constants,        
i < j,  i, j = 1,2,…,q, w shows the block number 
and wn be the number of blends in wth  block 
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such that 1 2n n n+ =  , the total number of 
blends in the mixture.  

Prescott et al. [5] proposed D-optimal designs 
for four components in orthogonal blocks. Chan 
and Sandhu [6] discussed the properties of D-, 
A- and E-optimal orthogonal designs in two 
blocks for Scheffe’s quadratic mixture model 
with three components. Their A- and E-optimal 
designs had six binary blends of the form (a, 1-a, 
0) with the optimal value a = 0.8167 and a = 
0.8454 respectively, and two centroids, one in 
each block as repeated blends. For practical 
investigation we modify the designs, discussed 
by Chan and Sandhu [6], so that some or all 
blends that we include contain a minimum 
proportion of each component and orthogonality 
holds in blocks. 
 

2. RE-PARAMETERIZATION OF THE 
CO-ORDINATE SYSTEM 

 
The co-ordinates of the points in the (q-1)-
dimensional simplex region are generally 
denoted by the symbols a,b,c,…. such that  
a + b + c +…. = 1. The Latin square based 
orthogonal block designs provide the algebraic 
expression for the information matrix X X′ in 
terms of the symbols a,b,c,…. . By using any 
optimal criteria, we can determine the optimal 
values of a,b,c,…. .  Prescott [7] discussed re-
parameterization of the co-ordinates for the 
simplification of problem and investigated the 
properties of alternative designs formed by 
shrinking the optimal designs in three and four 
components, towards the centroid. 

Consider a two-dimensional simplex formed 
by three components, given in Fig.1.Take any 
design point P(a, b, c) in the simplex such that a ≥ 
b ≥ c, O(1/3, 1/3, 1/3) is the centroid of the 
simplex, Q(f, 1-f, 0) is a point on the extension of 
the line OP to the edge of the simplex, shown in 
Fig.1.This figure is reproduced from Prescott [7]. 

 
Fig. 1.  Re-parameterization of the co-ordinates (a, 
b, c), with a ≥ b ≥ c, to (f, s). 

If P is located at the proportion s = QP/QO, 
along the line QO then, 
  a = (1-s)f + s /3 
  b = (1-s)(1-f) + s/3 
  c = s /3 
 
 So the point P is now in terms of f and s, 
where f identifies the point Q on the edge of the 
simplex and s is a shrinkage parameter that 
moves Q towards the centroid O. Therefore, by 
re-parameterization we examine the properties of 
optimal designs by shrinking it towards the 
centroid of the simplex. 
 

3. NEARLY OPTIMAL ORTHOGO-
NALLY BLOCKED DESIGNS FOR  
q = 3 

 
Consider Scheffé’s quadratic mixture model in 
three components. We require seven distinct 
runs to estimate parameters in equation (1.1). 
We use the designs with a single pair and two 
pairs of Latin squares. 
 
3.1. Designs Formed by using a Single Pair 

of Latin Square 

We use the design given in Table.1 which has a 
single Latin square and a common centroid in 
each block. The same design is proposed by 
John [4] for Scheffé’s quadratic mixture model 
in three components, Czitrom [8] for D-
optimality, Chan and Sandhu [6] for D-, A- and 
E-optimality in Scheffé’s quadratic mixture 
model in three components, and Prescott [7] for 
near optimality in Scheffé’s quadratic mixture 
model in three and four components. 
 
Table 1.  Latin Square orthogonal block design 
for q = 3. 
 

Block I  Block II 

Run  x1              x2        x3 
 Run  x1              x2        x3 

1 
2 
3 
4 

a           b         c 
b           c         a 
c           a         b 
1/3       1/3     1/3 

 5 
6 
7 
8 

a           c         b 
b           a         c 
c           b         a 
1/3       1/3     1/3 

 

With equal number of observations in each 
block of the design in Table.1, the orthogonality 
conditions given in (1.2) are satisfied, so this is 
an orthogonal block design in two blocks. 
Therefore it is unnecessary to consider the 
process variable z while optimizing the design. 
Only the matrix X X′ is considered where X is 
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the extended design matrix for Scheffé’s 
quadratic mixture model. 

 

1/ 3 1/ 3 1/ 3 1/ 9 1/ 9 1/ 9

1/ 3 1/ 3 1/ 3 1/ 9 1/ 9 1/ 9

a b c ab ac bc
b c a bc ab ac
c a b ac bc ab

X
a c b ac ab bc
b a c ab bc ac
c b a bc ac ab

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
Table 2.  Properties of nearly A-optimal designs 
with shrinkage parameter s applied to design in 
Table 1.    

s Opt f Min(T) To Efficiency
0 0.817 146.975 146.975 100 

0.05 0.817 180.818 146.975 81.28 

 0.1 0.817 224.995 146.975 65.32 

0.2 0.817 362.305 146.975 41.00 

 

For A-optimal design, we minimize T, 
where T = trace ( ) 1X X −′ , and for E-optimal 
design we maximize the minimum of the 
eigenvalues of X X′ . The trace of a matrix is the 
sum of its eigenvalues. The matrix X X′ of the 
design in Table.1, for Scheffe’s quadratic 
mixture model has six eigenvalues, as given by 
Chan and Sandhu [6]. All the eigenvalues are 
functions of components a, b, c and two 
eigenvalues 1 2,λ λ  are of multiplicity 2. Thus T 

= 1 1 1 1
1 2 3 42 2λ λ λ λ− − − −+ + + .The minimum 

value of T (146.97), for Scheffé’s quadratic 
model, is attained on the boundary of the 
simplex with a = 0.8167, b = 0.1833, c = 0, as 
given by Chan and Sandhu [6].The general 
design in Table.1 may be considered as 
shrinkage of the design with a = f, b = 1-f, c = 0 
by a factor s. So, for any fixed value s, T is 
minimized and is observed that T is a strictly 
increasing function of s as s → 1. Chan and 
Guan [9] gave a formula of finding the 
efficiency of A-optimal designs. 

A-efficiency = To / Min (T) × 100  

where To is the minimum T obtained by 
substituting optimal value of  f  in  original T 
obtained  from the design in Table 1. 

 

Table 3. Properties of nearly E-optimal designs 
with shrinkage parameter s applied to design in 
Table 1. 

s Opt f Absolute 
maximum 

Absolute 
maximum 
(original 
model) 

Efficiency

0 0.845 0.019 0.019 100 

0.05 0.845 0.016 0.019 81.24 

0.1 0.845 0.013 0.019 65.26 
0.2 0.845 0.008 0.019 41.00 

We see that, by shrinking A-optimal design 
towards the centroid, it becomes more efficient. 
For instance when s = 0.05, the optimal f is 
0.816 and the design has some loss in efficiency. 
But we get a least proportion of all available 
ingredients to form a mixture. 

 The six eigenvalues for the matrix X X′  are 
in the order λ1>λ3>λ4>λ2, with a ∈  [0, 1], as 
given by Chan and Sandhu [6]. The maximum of 
the minimum eigenvalue, that is of λ2 was 
0.01988 at a = 0.8454, b = 0.1546, c = 0.Again 
by re-parameterization of the co-ordinates (a, b, 
c) in terms of (f, s), we get the general form of 
the minimum eigenvalue, λ2 in this case. For the 
specific values of s, we get the maximum of λ2. 
The efficiency of E-optimal designs with the 
different values of s are obtained by, 

E-efficiency = Abs {Max (MinEigenvalue)}/ 
Abs {Max (MinEigenvalue)}o × 100 
 
3.2. Designs using Two Pairs of Squares for 

q = 3 
Prescott [7] used one extra Latin Square in each 
block for q = 3, to get more flexibility in the 
construction of nearly D-optimal designs. We 
use it to find nearly A- and E-optimal designs. 
The design with two Latin squares in each block, 
as given in Prescott [7], is given in Table.4. 

 
Table 4. Latin Square orthogonal block design 
with two squares in each block for q = 3. 
                                                     

 

Block I  Block II 
Run    x1            x2          x3  Run   x1             x2           x3 

1 a b c  8 a c b 
2 b c a  9 b a c 
3 c a b  10 c b a 
4 a' c' b'  11 a' b' c' 
5 b' a' c'  12 b' c' a' 
6 c' b' a'  13 c' a' b' 
7 1/3 1/3 1/3  14 1/3 1/3 1/3 
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3.2.1. Design formed by shrinking both pairs 
of Latin Square 

Consider the case when both pairs of Latin 
squares in Table.4 have same values i.e.  a′ = a, 
b′ = b, c′ = c and as a result we obtain a 
symmetric design. We shrink both pairs of Latin 
squares towards the centroid of the design. By 
re-parameterization of the coordinates, as it is 
done in section 3.1, nearly A-optimal designs are 
constructed. For s = 0, A-optimal design 
provides the minimum value of T (94.61) for 
Scheffe’s quadratic mixture model on the 
boundary of the simplex at a = f = 0.836, b = 1-f 
= 0.164, c = 0.  The efficiencies of other nearly 
A-optimal designs are given in Table.5.  

 

Table 5.  Properties of nearly A-optimal designs 
with shrinkage parameter s applied to design 
3.2.1. 
 

s Opt f Min(T) To Efficiency

0 0.836 94.611 94.611 100 

0.05 0.836 116.474 94.611 81.23 

0.1 0.836 145.034 94.611 65.23 

0.2 0.836 233.905 94.611 41.00 

 

E-optimal design, by shrinking both Latin 
Squares towards centroid provides the maximum 
of minimum eigenvalue value λ0 = λ2 = 0.028738 
at a = f = 0.878, b = 1-f = 0.122, c = 0. Again by 
re-parameterization, we get the general form of 
the minimum eigenvalue i.e. of λ2 in this case. 
Table.6 provides the maximum of the minimum 
eigenvalue for some specific values of s and the 
respective efficiencies of nearly E-optimal 
designs. 

 
Table 6. Properties of nearly E-optimal designs 
with shrinkage parameter s applied to design 
3.2.1. 
 

s Opt f Absolute 
maximum 

Absolute 
maximum 
(original 
model) 

Efficiency

0 0.878 0.029 0.029 100 

0.05 0.878 0.023 0.029 81.27 

0.1 0.878 0.019 0.029 65.31 

0.2 0.878 0.012 0.029 41.00 

3.2.2.  Design formed by shrinking one pair of 
Latin Squares 

Prescott [7] also proposed the construction of 
nearly D-optimal designs by shrinking only one 
Latin square in each block of the design listed in 
Table.4. We use it to construct nearly A- and E-
optimal designs. When only one Latin Square is 
shrunk towards the centroid of the design, other 
Latin square is left on the edges of simplex. For 
instance take blends 1, 2, 3, 8, 9, 10 as binary 
blends and shrink blends 4, 5, 6, 11, 12, 13 
towards the centroid of the design in 
Table.4.Thus a nearly optimal design here 
provides some binary blends and some three 
ingredient blends. The properties of proposed 
nearly A-optimal designs are given in Table 7.  

 
Table 7. Properties of nearly A-optimal designs 
with shrinkage parameter s applied to design 
3.2.2. 
 

s Opt f Min(T) To Efficiency

0 0.836 94.611 94.611 100 

0.05 0.836 103.534 94.611 91.38 

0.1 0.835 110.685 94.616 85.48 

0.2 0.831 118.532 94.711 79.90 

Next for the design 3.2.2 we compute a 
nearly E-optimal design.  The Table.8 below 
gives the properties of nearly E-optimal designs.  

 
Table 8.  Properties of nearly E-optimal designs 
with shrinkage parameter s applied to design 
3.2.2. 
 

s Opt f Absolute 
maximum 

Absolute 
maximum 
(original 
model) 

Efficiency

0 0.878 0.029 0.029 100 

0.05 0.878 0.026 0.029 91.00 

0.1 0.876 0.025 0.029 83.94 

0.2 0.868 0.024 0.032 74.00 

     
 
4. ROBUSTNESS WITH RESPECT TO D-, 

A- AND E-OPTIMALITY CRITERIA 
 
Chan and Sandhu [6] concluded that the design 
proposed by John [4], given in Table.1, is robust 
with respect to D-, A- and E-optimality criteria, 
in the sense that pΦ values do not change much 
when the component a varies from 0.15 and 
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0.19. The efficiency of the design is measured in 
terms of pΦ -optimality criteria, which changes 
as p changes. 

' 1/

1

) ( / )(
r

p p
k

k
p X rX λ−

=

=Φ ∑   

Here r shows the number of eigenvalues of the 
matrix X X′ and p > 0. 0p → + , p = 1 and 
p →∞  corresponds to the D-, A- and E-

optimality criteria. Here we extend the same 
work for checking the robustness with respect to 
nearly D-, A- and E-optimal designs.  

For this, first we use the nearly optimal 
orthogonally blocked design 3.1, with s = 0.05. 
It is nearly D-optimal for 0p → + , with the 
optimal f = 0.832 as given by Prescott [7]. 
Table.9 shows that for D-optimality, efficiency 
of the design i.e. pΦ  differs from the minimum 
value by about 5% or less when f ∈  [0.81, 0.85]. 
For A-optimality, with p = 1, values of 

pΦ differ from minimum by about 6% or less 
when f ∈  [0.81, 0.85].The difference increases 
as p increases. For E-optimality, with p →∞ , 
values of pΦ differ from the minimum by about 
29% or less when f ∈  [0.81, 0.85]. This shows 
that the nearly optimal design with s = 0.05 is 

robust with respect to D- A-, and E-optimality 
criteria because pΦ does not change as much 
when f ∈  [0.81, 0.85].Note from Table.9 that as 
p increases robustness decreases and still the 
robustness is in the acceptable range, when 
p →∞  and f ∈  [0.81, 0.85]. This decrease in 

robustness, as the optimality criterion changes, is 
due to the fact that D- and A-optimality criterion 
involve all eigenvalues whereas E-optimality 
criteria consider only one eigenvalue. 

For nearly optimal orthogonally blocked 
designs 3.2.1, with s = 0.05, values of pΦ  for 
D-optimality differ from the minimum value by 
about 30% or less when f ∈  [0.83 , 0.88].For A-
optimality with p = 1, values of pΦ differ from 
the minimum value by 13% or less when f ∈  
[0.83, 0.88]. For E-optimality, values of 

pΦ differ from the minimum value by 40% or 
less when f ∈  [0.83 , 0.88].The same results 
hold for nearly optimal orthogonally blocked 
designs 3.2.2, with s = 0.05. Hence the 
robustness, with respect to D-, A- and E-
optimality criteria, does not hold for the nearly 
optimal orthogonally blocked designs with two 
pairs of Latin squares in each block. This 
robustness is also checked for further values of s 
and the same results hold in each case.  

Table 9.  Values of pΦ  for different p and f with s = 0.05. 
 

p 
f 

                                      (f A =)                        (f D =)      (f E =) 
      0.800               0.810              0.817             0.824              0.832              0.845              0.850             0.860 

→ 0+ 74197.95 70943.65 69405.66 68460.14 68111.28 69431.75 70433.09 73946.54 

1 30.47 30.19 30.14 30.21 30.44 31.37 31.81 33.15 

2 44.39 43.33 42.88 42.64 42.73 43.85 44.51 46.64 

3 51.92 49.99 49.06 48.39 48.19 49.22 44.98 52.61 

4 57.08 54.36 52.96 51.82 51.31 52.15 52.98 55.99 

5 60.99 57.63 55.80 54.23 53.39 53.99 54.87 58.20 

6 64.07 60.21 58.04 56.07 54.91 55.25 56.18 59.79 

7 66.54 62.32 59.87 57.56 56.10 56.17 57.14 60.99 

8 68.54 64.06 61.40 58.81 57.07 56.87 57.88 61.94 

9 70.19 65.51 62.69 59.87 57.89 57.42 58.46 62.72 

10 71.56 66.74 63.80 60.80 58.61 57.86 58.94 63.37 

20 78.22 72.88 69.52 65.87 62.72 59.90 61.24 66.63 

→ ∞ 85.56 79.71 76.03 72.03 68.48 61.91 69.30 70.37 
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5. DISCUSSION 
 
In the proposed nearly optimal designs some or 
all blends have at least a minimum proportion of 
each ingredient available, with preserving 
orthogonality in blocks. Further it is observed 
that by shrinking only one of the Latin squares in 
each block towards the centroid, as in design 
3.2.2, the design points spread more and the 
design has higher efficiency as compared to 
design 3.2.1. It is also more efficient than the 
design 3.1with single Latin square in each block. 
For instance when s = 0.05, nearly A- and E-
optimal designs constructed from the design 
3.2.1 are not as efficient as those for design 
3.2.2. Their A- and E-efficiencies are 81.23%, 
81.27% respectively for the design 3.2.1, and 
91.38%, 91.0% respectively for the design 3.2.2.  

Therefore, nearly A- and E-optimal designs 
obtain through the design 3.2.2 are preferable to 
obtain through the design 3.2.1, for Scheffe’s 
quadratic mixture model. The same result holds 
for nearly D-optimal designs, as given by 
Prescott [7]. Further it is concluded that nearly 
D-, A- and E-optimal designs with single Latin 
square in each block are robust and this 
robustness does not hold when an extra Latin 
square is added in each block. 

Here below we provide the layouts of nearly 
A- and E-optimal designs obtain through the 
design 3.2.2. 

 
Table 10. Nearly A-optimal Orthogonal Block 
design with f = 0.836 and s = 0.05. 

 Block I Block II 

Run       x1              x2        x3 Run     x1                  x2             x3 
1 0.836 0.164 0 8 0.836 0 0.164 
2 0.164 0 0.836 9 0.164 0.836 0 
3 0 0.836 0.164 10 0 0.164 0.836 
4 0.811 0.017 0.172 11 0.811 0.172 0.017 
5 0.172 0.811 0.017 12 0.172 0.017 0.811 
6 0.017 0.172 0.811 13 0.017 0.811 0.172 
7 1/3 1/3 1/3 14 1/3 1/3 1/3 

 
Table 11.  Nearly E-optimal Orthogonal Block 
design with f = 0.878 and s = 0.05. 

Block I Block II 
Run       x1                x2          x3 Run       x1             x2          x3 

1 0.878 0.122 0 8 0.878 0 0.122 
2 0.122 0 0.878 9 0.122 0.878 0 
3 0 0.878 0.122 10 0 0.122 0.878 
4 0.851 0.017 0.132 11 0.851 0.132 0.017 
5 0.132 0.851 0.017 12 0.132 0.017 0.851 
6 0.017 0.132 0.851 13 0.017 0.851 0.132 
7 1/3 1/3 1/3 14 1/3 1/3 1/3 

 

The same idea can be extended for the 
designs based on q ≥ 4 components and for the 
designs consisting of three or more Latin 
Squares in each block. Results for the general 
case of q components is difficult to solve but 
will be very useful. 
 

6. ACKNOWLEDGEMENTS 
 
The authors would like to thank the Referees and 
the Editor for the helpful suggestions and the 
comments that improved the presentation of the 
paper. The first author would like to give special 
tribute to the former Editor Dr. Hafeez (Late), 
for his guidance and encouragement during the 
revision of manuscript. 
 

7. REFERENCES 
 
1. Scheffé, H. Experiments with Mixtures. J.R. Stat. 

Soc. B, 20: 344-360 (1958). 
2. Scheffé, H. Simplex-centroid designs for 

experiments with Mixtures. J.R. Stat. Soc. B, 25: 
235–263 (1963). 

3. Nigam, A.K. Block designs for mixture 
experiments. Ann. Math. Stat., 41: 1861-1869 
(1970). 

4. John, P.W.M. Experiments with Mixtures 
Involving Process Variables. Technical Report 8, 
Center for Statistical Sciences, University of 
Texas, Austin, TX, p. 1-17 (1984). 

5. Prescott, P., N.R. Draper, A.M. Dean, S.M. 
Lewis, P.W.M. John, & M.G. Tuck. Mixture 
designs for four components in orthogonal 
blocks. Technometrics, 35: 268–276 (1993). 

6. Chan, L.Y. & M.K. Sandhu. Optimal orthogonal 
block designs for a quadratic mixture model for 
three components. J. Appl. Statist., 26 (1): 19–34 
(1999). 

7. Prescott, P. Nearly optimal orthogonally blocked 
designs for a quadratic mixture model with q 
components. Comm. Stat. Theory Methods, 
27(10): 2259-2580 (1998).  

8. Czitrom, V. Mixture experiments with process 
variables: D-optimal orthogonal experimental 
designs. Comm. Stat. Theory Methods, 17(1): 
105-121 (1988). 

9. Chan, L.Y. & Y.N. Guan. A- and D-optimal 
designs for a log contrast model for experiments 
with mixtures. J. Appl. Stat., 28(5): 537–546 
(2001). 




