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1. INTRODUCTION 
 
The concept of generalized closed sets play a 
significant role in topology. There are many 
research papers which deals with different types 
of generalized closed sets. Bhattacharya and 
Lahiri [3] introduced sg-closed set in topological 
spaces. Arya and Nour [2] introduced gs-closed 
sets in topological spaces. Sheik John [16] 
introduced ω -closed sets in topological spaces. 
Rajamani and Viswanathan [14] introduced 

gsα -closed sets in topological spaces. Quite 
Recently, Ravi and Ganesan [15] introduced -
closed sets and proved that they forms a 
topology. In this paper we introduce a new class 
of sets, namely -closed sets, for topological 
spaces and study their basic properties.  
 
 
2. PRELIMINARIES 
 
Throughout this paper (X, τ) and (Y, σ) (or X 
and Y) represent topological spaces on which no 
separation axioms are assumed unless otherwise 
mentioned. For a subset A of a space (X, τ), 
cl(A), int(A) and Ac or X − A denote the closure 
of A, the interior of A and the complement of A 
respectively. 

We recall the following definitions which are 
useful in the sequel. 

Definition 2.1 

A subset A of a space (X, τ) is called: 

(i)  semi-open set [8] if A ⊆ cl(int(A)); 

(ii)  preopen set [11] if A ⊆ int(cl(A)); 

(iii)  α -open set [12] if A ⊆ int(cl(int(A))); 

(iv)  semi-preopen [1] if A ⊆ cl(int(cl(A))). 

The complements of the above mentioned open 
sets are called their respective closed sets. 

The preclosure [13] (resp. semi-closure [5], 
α -closure [12], semi-pre-closure [1]) of a 
subset A of X, denoted by pcl(A) (resp. scl(A), 
α cl(A), spcl(A)) is defined to be the 
intersection of all preclosed (resp. semi-closed, 
α -closed, semi-preclosed) sets of (X, τ) 
containing A. It is known that pcl(A) (resp. 
scl(A), α cl(A), spcl(A)) is a preclosed (resp. 
semi-closed, α -closed, semi-preclosed) set. For 
any subset A of an arbitrarily chosen topological 
space, the semi-interior [5] (resp. α -interior 
[12], preinterior [13], semi-pre-interior [1]) of A, 
denoted by sint(A) (resp. α int(A), pint(A), 
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spint(A)), is defined to be the union of all semi-
open (resp. α -open, preopen, semi-preopen) 
sets of (X, τ) contained in A.  

Definition 2.2 

A subset A of a space (X, τ) is called: 

(i)  a generalized closed (briefly g-closed) set 
[7] if cl(A) ⊆ U whenever A ⊆ U and U is 
open in (X, τ). The complement of g-
closed set is called g-open set; 

(ii)  a semi-generalized closed (briefly sg-
closed) set [3] if scl(A) ⊆ U whenever A 
⊆ U and U is semi-open in (X, τ). The 
complement of sg-closed set is called sg-
open set; 

(iii)  a generalized semi-closed (briefly gs-
closed) set [2] if scl(A) ⊆ U whenever A 
⊆ U and U is open in (X, τ). The 
complement of gs-closed set is called gs-
open set; 

(iv) an α -generalized closed (briefly α g-
closed) set [10] if α cl(A) ⊆ U whenever 
A ⊆ U and U is open in (X, τ). The 
complement of α g-closed set is called 
α g-open set; 

(v) a generalized α -closed (briefly gα -
closed) set [9] if α cl(A) ⊆ U whenever A 
⊆ U and U is α -open in (X, τ). The 
complement of gα -closed set is called 
gα -open set; 

(vi)  a gsα -closed set [14] if α cl(A) ⊆ U 
whenever A ⊆ U and U is semi-open in 
(X, τ). The complement of gsα -closed set 
is called gsα -open set; 

(vii)  a generalized semi-preclosed (briefly gsp-
closed) set [6] if spcl(A) ⊆ U whenever A 
⊆ U and U is open in (X, τ). The 
complement of gsp-closed set is called 
gsp-open set; 

(viii)  a generalized preclosed (briefly gp-closed) 
set [13] if pcl(A) ⊆ U whenever A ⊆ U 
and U is open in (X, τ). The complement 
of gp-closed set is called gp-open set; 

(ix)  a ĝ-closed set [17] (= ω -closed [16]) if 
cl(A) ⊆ U whenever A ⊆ U and U is semi-
open in (X, τ). The complement of ĝ-
closed set is called ĝ-open set; 

(x)  a -closed set [15] if cl(A) ⊆ U whenever 
A ⊆ U and U is sg-open in (X, τ). The 

complement of -closed set is called -
open set. 

Remark 2.3 

The collection of all -closed (resp. -closed, 
ω -closed, g-closed, gs-closed, gsp-closed, α g-
closed, gsα -closed, sg-closed, gα -closed, gp-
closed, α -closed, semi-closed) sets is denoted 
by G C(X) (resp. GC(X), ω C(X), G C(X), 
GS C(X), GSP C(X), Gα C(X), GSα C(X), 
SG C(X), αG C(X), GP C(X), α C(X), 
S C(X)). 

The collection of all -open (resp. -open, 
ω -open, g-open, gs-open, gsp-open, α g-open, 

gsα -open, sg-open, gα -open, gp-open, α -
open, semi-open) sets is denoted byG O(X) 
(resp. GO(X), ω O(X), G O(X), GS O(X), 
GSP O(X), Gα O(X), GSα O(X), SG O(X), 
αG O(X), GP O(X), α O(X), S O(X)). 

We denote the power set of X by P(X). 

Result 2.4  

(1)   Every semi-closed set is sg-closed [4]. 

(2)  Every -closed set is -closed but not 
conversely [15]. 

Corollary 2.5 [3] 

Let A be a sg-closed set which is also open. 
Then A ∩ F is sg-closed whenever F is semi-
closed.  
 
 
3. -CLOSED SETS 
 
We introduce the following definition: 

Definition 3.1 

A subset A of X is called a -closed set if 
α cl(A) ⊆ U whenever A ⊆ U and U is sg-open 
in (X, τ). 

Proposition 3.2 

Every closed set is -closed. 

Proof 

Let A be a closed set and G be any sg-open set 
containing A. Since A is closed, we have 
α cl(A) ⊆ cl(A) = A ⊆ G. Hence A is -closed. 

The converse of Proposition 3.2 need not be true 
as seen from the following example. 
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Example 3.3 

Let X = {a, b, c} with τ = {φ, {a}, X}. Then 
G C(X) = {φ, {b}, {c}, {b, c}, X}. Here, A = 
{b} is -closed set but not closed. 

Proposition 3.4 

Every α -closed set is -closed. 

Proof 

Let A be an α -closed set and G be any sg-open 
set containing A. Since A is α -closed, we have 
α cl(A) = A ⊆ G. Hence A is -closed. 

The converse of Proposition 3.4 need not be true 
as seen from the following example. 

Example 3.5 

Let X = {a, b, c} with τ = {φ, {a, b}, X}. Then 
G C(X) = {φ, {c}, {a, c}, {b, c}, X} and α C(X) 
= {φ, {c}, X}. Here, A = {a, c} is -closed set 
but not α -closed. 

Proposition 3.6 

Every -closed set is gα -closed. 

Proof 

Let A be an -closed set and G be any α -open 
set containing A. Since any α -open set is semi-
open and semi-open set is sg-open, we have 
α cl(A) ⊆ G. Hence A is gα -closed. 

The converse of Proposition 3.6 need not be true 
as seen from the following example. 

Example 3.7 

Let X = {a, b, c} with τ = {φ, {a}, {b, c}, X}. 
Then G C(X) = {φ, {a}, {b, c}, X} and 
αG C(X) = P(X). Here, A = {c} is gα -closed 

set but not -closed. 

Proposition 3.8 

Every -closed set is α g-closed. 

Proof 

Let A be an -closed set and G be any open set 
containing A. Since any open set is sg-open, we 
have α cl(A) ⊆ G. Hence A is α g-closed. 

The converse of Proposition 3.8 need not be true 
as seen from the following example. 

Example 3.9 

Let X = {a, b, c} with τ = {φ, {a}, {b, c}, X}. 
Then G C(X) = {φ, {a}, {b, c}, X} and 

Gα C(X) = P(X). Here, A = {c} is α g-closed 
set but not -closed. 

Proposition 3.10 

Every -closed set is gs-closed (sg-closed). 

Proof 

Let A be an -closed set and G be any open set 
(semi-open set) containing A. Since any open set 
(semi-open set) is sg-open, we have scl(A) ⊆ 
α cl(A) ⊆ G. Hence A is gs-closed (sg-closed). 

The converse of Proposition 3.10 need not be 
true as seen from the following example. 

Example 3.11 

Let X = {a, b, c} with τ = {φ, {a}, {b, c}, X}. 
Then G  C(X) = {φ, {a}, {b, c}, X} and 
SG C(X) = GS C(X) = P(X). Here, A = {c} is 
both sg-closed and gs-closed set but not -
closed. 

Proposition 3.12 

Every -closed set is gsα -closed. 

Proof 

Let A be an -closed set and G be any semi-
open set containing A. Since any semi-open set 
is sg-open, we have α cl(A) ⊆ G. Hence A is 

gsα -closed. 

The converse of Proposition 3.12 need not be 
true as seen from the following example. 

Example 3.13 

Let X = {a, b, c} with τ = {φ, {a}, {b, c}, X}. 
Then G C(X) = {φ, {a}, {b, c}, X} and 

GSα C(X) = P(X). Here, A = {c} is gsα -closed 
set but not -closed. 

Proposition 3.14 

Every -closed set is gsp-closed. 

Proof 

Let A be an -closed set and G be any open set 
containing A. Since any open set is sg-open, we 
have spcl(A) ⊆ α cl(A) ⊆ G. Hence A is gsp-
closed. 
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The converse of Proposition 3.14 need not be 
true as seen from the following example. 

Example 3.15 

Let X = {a, b, c} with τ = {φ, {a}, {b, c}, X}. 
Then G C(X) = {φ, {a}, {b, c}, X} and 
GSP C(X) = P(X). Here, A = {c} is gsp-closed 
set but not -closed. 

Proposition 3.16 

Every -closed set is gp-closed. 

Proof 

Let A be an -closed set and G be any open set 
containing A. Since any open set is sg-open, we 
have pcl(A) ⊆ α cl(A) ⊆ G. Hence A is gp-
closed. 

The converse of Proposition 3.16 need not be 
true as seen from the following example. 

Example 3.17 

Let X = {a, b, c} with τ = {φ, {a}, X}. Then  
G C(X) = {φ, {b}, {c}, {b, c}, X} and GP C(X) 
= {φ, {b}, {c}, {a, b}, {a, c}, {b, c}, X}. Here, 
A = {a, b} is gp-closed set but not -closed. 

Remark 3.18 

The following examples show that -
closedness is independent of ω -closedness, 
semi-closedness and g-closedness. 

Example 3.19 

Let X = {a, b, c} with τ = {φ, {a}, X}. Then 
G C(X) = {φ, {b}, {c}, {b, c}, X} and ω C(X) = 
{φ, {b, c}, X}. Here, A = {c} is -closed set 
but not ω -closed. 

Example 3.20 

Let X = {a, b, c} with τ = {φ, {a}, {b, c}, X}. 
Then G C(X) = {φ, {a}, {b, c}, X} and ω C(X) 
= P(X). Here, A = {c} is ω -closed set but not 

-closed. 

Example 3.21 

Let X = {a, b, c} with τ = {φ, {a}, {b}, {a, b}, 
X}. Then G C(X) = {φ, {c}, {a, c}, {b, c}, X} 
and S C(X) = {φ, {a}, {b}, {c}, {a, c}, {b, c}, 
X}. Here, A = {b} is semi-closed set but not -
closed. 

 

Example 3.22 

Let X = {a, b, c} with τ = {φ, {a, b}, X}. 
ThenG C(X) = {φ, {c}, {a, c}, {b, c}, X} and 
S C(X) = {φ, {c}, X}. Here, A = {b, c} is -
closed set but not semi-closed. 

Example 3.23 

Let X = {a, b, c} with τ = {φ, {a}, {a, b}, X}. 
Then G C(X) = {φ, {b}, {c}, {b, c}, X} and 
G C(X) = {φ, {c}, {a, c}, {b, c}, X}. Here, 

(i) A = {b} is -closed set but not g closed. 

(ii) B= {a, c} is g-closed set but not -closed. 

Remark 3.24 

From the above discussions and known results in 
[6, 15, 16, 18], we obtain the following diagram, 
where A → B (resp. A      B) represents A 
implies B but not conversely (resp. A and B are 
independent of each other) 

 
Where 

A: semi-closed B: sg-closed C: gs-closed D: gsp-
closed E: α -closed F: -closed G: gα -closed 
H : α g-closed I: closed J : -closed K: ω -
closed L: g-closed. 

None of the above implications is reversible as 
shown in the above examples and in the related 
papers [6, 15, 16, 18]. 

4. PROPERTIES OF -CLOSED SETS 

In this section, we discuss some basic properties 
of -closed sets. 
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Definition 4.1 [15] 

The intersection of all sg-open subsets of (X, τ) 
containing A is called the sg-kernel of A and 
denoted by sg-ker(A). 

Lemma 4.2  

A subset A of (X, τ) is -closed if and only if 
α cl(A) ⊆ sg-ker(A). 

Proof 

Suppose that A is -closed. Then α cl(A) ⊆ U 
whenever A ⊆ U and U is sg-open. Let x ∈ 
α cl(A). If x ∉ sg-ker(A), then there is a sg-
open set U containing A such that x ∉ U. Since 
U is a sg-open set containing A, we have x ∉ 
α cl(A) and this is a contradiction. 

Conversely, let α cl(A) ⊆ sg-ker(A). If U is any 
sg-open set containing A, then α cl(A) ⊆ sg-
ker(A) ⊆ U. Therefore, A is -closed. 

Proposition 4.3 

For any subset A of (X, τ), X2 ∩ α cl(A) ⊆ sg-
ker(A), where X2 = {x ∈ X = X1 ∪ X2 : {x} is 
preopen}. 

Proof 

Let x ∈ X2 ∩ α cl(A) and suppose that x ∉ sg-
ker(A). Then there is a sg-open set U containing 
A such that x ∉ U. If F = X − U, then F is sg-
closed. Since α cl({x}) ⊆ α cl(A), we have 
int(α cl({x})) ⊆ A ∪ int(α cl(A)). Again since 
x ∈ X2, we have x ∉ X1 and so int(α cl({x})) = 
φ. Therefore, there has to be some point y ∈ A ∩ 
int(α cl({x})) and hence y ∈ F ∩ A, a 
contradiction. 

Theorem 4.4 

 A subset A of (X, τ) is -closed if and only if 
X1 ∩ α cl(A) ⊆ A, where X1 = {x ∈ X = X1 ∪ 
X2 : {x} is nowhere dense}. 

Proof 

Suppose that A is -closed. Let x ∈ X1 ∩ 
α cl(A). Then x ∈ X1 and x ∈ α cl(A). Since x 
∈ X1, int(α cl({x})) = φ. Therefore, {x} is semi-
closed, since int(α cl({x})) ⊆ {x}. Since every 
semi-closed set is sg-closed [Result 2.4 (1)], {x} 
is sg-closed. If x ∉ A and if U = X \ {x}, then U 
is a sg-open set containing A and so α cl(A) ⊆ 
U, a contradiction. 

Conversely, suppose that X1 ∩ α cl(A) ⊆ A. 
Then X1 ∩ α cl(A) ⊆ sg-ker(A), since A ⊆ sg-
ker(A). Now α cl(A) = X ∩ α cl(A) = (X1 ∪ 
X2) ∩ α cl(A) = (X1 ∩ α cl(A)) ∪ (X2 ∩ 
α cl(A)) ⊆ sg-ker(A), since X1 ∩ α cl(A) ⊆ sg-
ker(A) and by Proposition 4.3. Thus, A is -
closed by Lemma 4.2. 

Theorem 4.5 

An arbitrary intersection of -closed sets is -
closed. 

Proof 

Let F = {Ai : i ∈ ∧} be a family of -closed sets 
and let A = ∩ i ∈ ∧ Ai. Since A ⊆ Ai for each i, X1 

∩ α cl(A) ⊆ X1 ∩ α cl(Ai) for each i.Using 
Theorem 4.4 for each -closed set Ai, we have 
X1 ∩ α cl(Ai) ⊆ Ai. Thus, X1 ∩ α cl(A) ⊆ X1 ∩ 
α cl(Ai) ⊆ Ai for each i ∈ ∧. That is, X1 ∩ 
α cl(A) ⊆ A and so A is -closed by Theorem 
4.4. 

Corollary 4.6 

If A is a -closed set and F is a closed set, then 
A ∩ F is a -closed set. 

Proof 

Since F is closed, it is -closed. Therefore by 
Theorem 4.5, A ∩ F is also a -closed set. 

Proposition 4.7 

If A and B are -closed sets in (X, τ), then A ∪ 
B is -closed in (X, τ). 

Proof 

If A ∪ B ⊆ G and G is sg-open, then A ⊆ G and 
B ⊆ G. Since A and B are -closed, G ⊇ 
α cl(A) and G ⊇ α cl(B) and hence G ⊇ 
α cl(A) ∪ α cl(B) = α cl(A ∪ B). Thus A ∪ B 
is -closed set in (X, τ). 

Proposition 4.8 

If a set A is -closed in (X, τ), thenα cl(A) − A 
contains no nonempty closed set in (X, τ). 

Proof 

Suppose that A is -closed. Let F be a closed 
subset of α cl(A) − A. Then A ⊆ Fc. But A is 

-closed, therefore α cl(A) ⊆ Fc. 
Consequently, F ⊆ (α cl(A))c. We already have 
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F ⊆ α cl(A). Thus F ⊆ α cl(A) ∩ (α cl(A))c 
and F is empty. 

The converse of Proposition 4.8 need not be true 
as seen from the following example. 

Example 4.9 

Let X = {a, b, c, d} with τ = {φ, {b, c}, {b, c, d}, 
{a, b, c}, X}. ThenG C(X) = {φ, {a}, {d}, {a, 
d}, {a, b, d}, {a, c, d}, X}. If A = {a, b, d}, then 
α cl(A) − A = X − {a, b, d} = {c} does not 
contain any nonempty closed set. But A is not 

-closed in (X, τ). 

Theorem 4.10 

A set A is -closed if and only if α cl(A) − A 
contains no nonempty sg-closed set. 

Proof 

Necessity. Suppose that A is -closed. Let S be 
a sg-closed subset of α cl(A) − A. Then A ⊆ Sc. 
Since A is -closed, we have α cl(A) ⊆ Sc. 
Consequently, S ⊆ (α cl(A))c. Hence, S ⊆ 
α cl(A) ∩ (α cl(A))c = φ. Therefore S is empty. 

Sufficiency. Suppose that α cl(A) − A contains 
no nonempty sg-closed set. Let A ⊆ G and G be 
closed and sg-open. If α cl(A) ⊄  G, then 
α cl(A) ∩ Gc ≠ φ. Since α cl(A) is a α -closed 
set (and hence semi-closed set) and Gc is a sg-
closed set and open, α cl(A) ∩ Gc is a nonempty 
sg-closed subset of α cl(A) − A by Corollary 
2.5. This is a contradiction. Therefore, α cl(A) 
⊆ G and hence A is -closed. 

Proposition 4.11 

If A is -closed in (X, τ) and A ⊆ B ⊆ α cl(A), 
then B is -closed in (X, τ). 

Proof 

Let G be a sg-open set of (X, τ) such that B ⊆ G. 
Then A ⊆ G. Since A is an -closed 
set,α cl(A) ⊆ G. Also α cl(B) = α cl(A) ⊆ G. 
Hence B is also an -closed in (X, τ). 

Proposition 4.12 

Let A ⊆ Y ⊆ X and suppose that A is -closed 
in (X, τ). Then A is -closed relative to Y. 

Proof 

Let A ⊆ Y ∩ G, where G is sg-open in (X, τ). 
Then A ⊆ G and hence α cl(A) ⊆ G. This 

implies that Y ∩ α cl(A) ⊆ Y ∩ G. Thus A is 
-closed relative to Y. 

Proposition 4.13 

If A is a sg-open and -closed in (X, τ), then A 
is α -closed in (X, τ). 

Proof 

Since A is sg-open and -closed, α cl(A) ⊆ A 
and hence A is α -closed in (X, τ). 

Proposition 4.14 

For each x ∈ X, either {x} is sg-closed or {x}c is 
-closed in (X, τ). 

Proof 

Suppose that {x} is not sg-closed in (X, τ). Then 
{x}c is not sg-open and the only sg-open set 
containing {x}c is the space X itself. Therefore 
α cl({x}c) ⊆ X and so {x}c is -closed in (X, 
τ). 
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