ISSN: 0377 - 2969

Original Article

$\ddot{\mathcal{E}}_{\alpha}$ -CLOSED SETS IN TOPOLOGY

O. Ravi 1*, J. Antony Rex Rodrigo², S. Ganesan³ and A. Kumaradhas⁴

¹Department of Mathematics, P.M. Thevar College, Usilampatti,
Madurai District, Tamil Nadu, India

²Department of Mathematics, V.O. Chidambaram College,
Thoothukudi, Tamil Nadu, India

³Department of Mathematics, N.M.S.S.V.N. College,
Nagamalai, Madurai, Tamil Nadu, India

⁴Department of Mathematics, Vivekananda College,
Agasteeswaram, Kanyakumari, Tamil Nadu, India

Abstract: In this paper, we introduce a new class of sets called \ddot{g}_{α} -closed sets in topological spaces. We prove that this class lies between α -closed sets and $g\alpha$ -closed sets. We discuss some basic properties of \ddot{g}_{α} -closed sets.

Keywords: Topological space, sg-closed set, \ddot{g} -closed set, \ddot{g} a-closed set, gp-closed set, gsp-closed set 2000 Mathematics Subject Classification: 54C10, 54C08, 54C05

1. INTRODUCTION

The concept of generalized closed sets play a significant role in topology. There are many research papers which deals with different types of generalized closed sets. Bhattacharya and Lahiri [3] introduced sg-closed set in topological spaces. Arya and Nour [2] introduced gs-closed sets in topological spaces. Sheik John [16] introduced ω -closed sets in topological spaces. Rajamani and Viswanathan [14] introduced αgs -closed sets in topological spaces. Quite Recently, Ravi and Ganesan [15] introduced \ddot{g} -closed sets and proved that they forms a topology. In this paper we introduce a new class of sets, namely \ddot{g}_{α} -closed sets, for topological spaces and study their basic properties.

2. PRELIMINARIES

Throughout this paper (X, τ) and (Y, σ) (or X and Y) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , cl(A), int(A) and A^c or X - A denote the closure of A, the interior of A and the complement of A respectively.

We recall the following definitions which are useful in the sequel.

Definition 2.1

A subset A of a space (X, τ) is called:

- (i) semi-open set [8] if $A \subseteq cl(int(A))$;
- (ii) preopen set [11] if $A \subseteq int(cl(A))$;
- (iii) α -open set [12] if $A \subseteq int(cl(int(A)))$;
- (iv) semi-preopen [1] if $A \subseteq cl(int(cl(A)))$.

The complements of the above mentioned open sets are called their respective closed sets.

The preclosure [13] (resp. semi-closure [5], α -closure [12], semi-pre-closure [1]) of a subset A of X, denoted by pcl(A) (resp. scl(A), α cl(A), spcl(A)) is defined to be the intersection of all preclosed (resp. semi-closed, α -closed, semi-preclosed) sets of (X, τ) containing A. It is known that pcl(A) (resp. scl(A), α cl(A), spcl(A)) is a preclosed (resp. semi-closed, α -closed, semi-preclosed) set. For any subset A of an arbitrarily chosen topological space, the semi-interior [5] (resp. α -interior [12], preinterior [13], semi-pre-interior [1]) of A, denoted by sint(A) (resp. α int(A), pint(A),

128 O.Ravi et al

spint(A)), is defined to be the union of all semiopen (resp. α -open, preopen, semi-preopen) sets of (X, τ) contained in A.

Definition 2.2

A subset A of a space (X, τ) is called:

- (i) a generalized closed (briefly g-closed) set
 [7] if cl(A) ⊆ U whenever A ⊆ U and U is open in (X, τ). The complement of g-closed set is called g-open set;
- (ii) a semi-generalized closed (briefly sgclosed) set [3] if scl(A) ⊆ U whenever A ⊆ U and U is semi-open in (X, τ). The complement of sg-closed set is called sgopen set;
- (iii) a generalized semi-closed (briefly gs-closed) set [2] if scl(A) ⊆ U whenever A ⊆ U and U is open in (X, τ). The complement of gs-closed set is called gs-open set;
- (iv) an α -generalized closed (briefly α g-closed) set [10] if α cl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ). The complement of α g-closed set is called α g-open set;
- (v) a generalized α -closed (briefly $g\alpha$ -closed) set [9] if α cl(A) \subseteq U whenever A \subseteq U and U is α -open in (X, τ). The complement of $g\alpha$ -closed set is called $g\alpha$ -open set;
- (vi) a αgs -closed set [14] if $\alpha \operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) . The complement of αgs -closed set is called αgs -open set;
- (vii) a generalized semi-preclosed (briefly gsp-closed) set [6] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) . The complement of gsp-closed set is called gsp-open set;
- (viii) a generalized preclosed (briefly gp-closed) set [13] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) . The complement of gp-closed set is called gp-open set;
- (ix) a \hat{g} -closed set [17] (= ω -closed [16]) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semiopen in (X, τ) . The complement of \hat{g} -closed set is called \hat{g} -open set;
- (x) a \ddot{g} -closed set [15] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is sg-open in (X, τ) . The

complement of \ddot{g} -closed set is called \ddot{g} open set.

Remark 2.3

The collection of all \ddot{g}_{α} -closed (resp. \ddot{g} -closed, ω -closed, g-closed, gs-closed, gsp-closed, α g-closed, αgs -closed, sg-closed, g α -closed, gp-closed, α -closed, semi-closed) sets is denoted by $\ddot{G}_{\alpha}C(X)$ (resp. $\ddot{G}C(X)$, $\omega C(X)$, GC(X), GSC(X), GSPC(X), $\alpha GC(X)$, $\alpha GC(X)$, $\alpha GC(X)$, $\alpha GC(X)$, $\alpha C(X)$,

The collection of all \ddot{S}_{α} -open (resp. \ddot{S} -open, ω -open, g-open, gs-open, gsp-open, α g-open, αgs -open, sg-open, g α -open, gp-open, α -open, semi-open) sets is denoted by $\ddot{G}_{\alpha}O(X)$ (resp. $\ddot{G}O(X)$, $\omega O(X)$, GO(X), GSO(X), GSO(X), $\alpha GO(X)$, $\alpha GO(X)$,

We denote the power set of X by P(X).

Result 2.4

- (1) Every semi-closed set is sg-closed [4].
- (2) Every \ddot{g} -closed set is \ddot{g}_{α} -closed but not conversely [15].

Corollary 2.5 [3]

Let A be a sg-closed set which is also open. Then $A \cap F$ is sg-closed whenever F is semi-closed.

3. \ddot{g}_{α} -CLOSED SETS

We introduce the following definition:

Definition 3.1

A subset A of X is called a \ddot{g}_{α} -closed set if α cl(A) \subseteq U whenever A \subseteq U and U is sg-open in (X, τ).

Proposition 3.2

Every closed set is g_{α} -closed.

Proof

Let A be a closed set and G be any sg-open set containing A. Since A is closed, we have α cl(A) \subseteq cl(A) = A \subseteq G. Hence A is \ddot{g}_{α} -closed.

The converse of Proposition 3.2 need not be true as seen from the following example.

Example 3.3

Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, X\}$. Then $\ddot{G}_{\alpha}C(X) = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$. Here, $A = \{b\}$ is \ddot{g}_{α} -closed set but not closed.

Proposition 3.4

Every α -closed set is \ddot{g}_{α} -closed.

Proof

Let A be an α -closed set and G be any sg-open set containing A. Since A is α -closed, we have α cl(A) = A \subset G. Hence A is \ddot{g}_{α} -closed.

The converse of Proposition 3.4 need not be true as seen from the following example.

Example 3.5

Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a, b\}, X\}$. Then $\ddot{G}_{\alpha}C(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$ and $\alpha C(X) = \{\phi, \{c\}, X\}$. Here, $A = \{a, c\}$ is \ddot{g}_{α} -closed set but not α -closed.

Proposition 3.6

Every $\ddot{\mathcal{E}}_{\alpha}$ -closed set is g α -closed.

Proof

Let A be an g_{α} -closed set and G be any α -open set containing A. Since any α -open set is semi-open and semi-open set is sg-open, we have α cl(A) \subseteq G. Hence A is $g\alpha$ -closed.

The converse of Proposition 3.6 need not be true as seen from the following example.

Example 3.7

Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Then $\ddot{G}_{\alpha}C(X) = \{\phi, \{a\}, \{b, c\}, X\}$ and $G\alpha C(X) = P(X)$. Here, $A = \{c\}$ is $g\alpha$ -closed set but not $\ddot{\mathcal{G}}_{\alpha}$ -closed.

Proposition 3.8

Every \ddot{g}_{α} -closed set is α g-closed.

Proof

Let A be an \ddot{g}_{α} -closed set and G be any open set containing A. Since any open set is sg-open, we have α cl(A) \subseteq G. Hence A is α g-closed.

The converse of Proposition 3.8 need not be true as seen from the following example.

Example 3.9

Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Then $\ddot{G}_{\alpha}C(X) = \{\phi, \{a\}, \{b, c\}, X\}$ and $\alpha G C(X) = P(X)$. Here, $A = \{c\}$ is α g-closed set but not $\ddot{\mathcal{G}}_{\alpha}$ -closed.

Proposition 3.10

Every \ddot{g}_{α} -closed set is gs-closed (sg-closed).

Proof

Let A be an \ddot{g}_{α} -closed set and G be any open set (semi-open set) containing A. Since any open set (semi-open set) is sg-open, we have $scl(A) \subseteq \alpha$ $cl(A) \subset G$. Hence A is gs-closed (sg-closed).

The converse of Proposition 3.10 need not be true as seen from the following example.

Example 3.11

Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Then \ddot{G}_{α} $C(X) = \{\phi, \{a\}, \{b, c\}, X\}$ and SG C(X) = GS C(X) = P(X). Here, $A = \{c\}$ is both sg-closed and gs-closed set but not $\ddot{\mathcal{E}}_{\alpha}$ -closed.

Proposition 3.12

Every \ddot{g}_{α} -closed set is αgs -closed.

Proof

Let A be an \ddot{g}_{α} -closed set and G be any semi-open set containing A. Since any semi-open set is sg-open, we have α cl(A) \subseteq G. Hence A is αgs -closed.

The converse of Proposition 3.12 need not be true as seen from the following example.

Example 3.13

Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Then $\ddot{G}_{\alpha}C(X) = \{\phi, \{a\}, \{b, c\}, X\}$ and $\alpha GS C(X) = P(X)$. Here, $A = \{c\}$ is αgs -closed set but not $\ddot{\mathcal{G}}_{\alpha}$ -closed.

Proposition 3.14

Every \ddot{g}_{α} -closed set is gsp-closed.

Proof

Let A be an \ddot{g}_{α} -closed set and G be any open set containing A. Since any open set is sg-open, we have $\operatorname{spcl}(A) \subseteq \alpha \operatorname{cl}(A) \subseteq G$. Hence A is gsp-closed.

130 O.Ravi et al

The converse of Proposition 3.14 need not be true as seen from the following example.

Example 3.15

Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Then \ddot{G} $C(X) = \{\phi, \{a\}, \{b, c\}, X\}$ and GSP C(X) = P(X). Here, $A = \{c\}$ is gsp-closed set but not \ddot{g}_{α} -closed.

Proposition 3.16

Every \ddot{g}_{α} -closed set is gp-closed.

Proof

Let A be an \ddot{g}_{α} -closed set and G be any open set containing A. Since any open set is sg-open, we have $pcl(A) \subseteq \alpha cl(A) \subseteq G$. Hence A is gp-closed.

The converse of Proposition 3.16 need not be true as seen from the following example.

Example 3.17

Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, X\}$. Then $\ddot{G} C(X) = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$ and $GP C(X) = \{\phi, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Here, $A = \{a, b\}$ is gp-closed set but not \ddot{g}_{α} -closed.

Remark 3.18

The following examples show that \ddot{g}_{α} -closedness is independent of ω -closedness, semi-closedness and g-closedness.

Example 3.19

Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, X\}$. Then $\ddot{G}_{\alpha}C(X) = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$ and $\omega C(X) = \{\phi, \{b, c\}, X\}$. Here, $A = \{c\}$ is \ddot{g}_{α} -closed set but not ω -closed.

Example 3.20

Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Then $\ddot{G}_{\alpha}C(X) = \{\phi, \{a\}, \{b, c\}, X\}$ and $\omega C(X) = P(X)$. Here, $A = \{c\}$ is ω -closed set but not \ddot{g}_{α} -closed.

Example 3.21

Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then $\ddot{G}_{\alpha}C(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$ and $SC(X) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}, X\}$. Here, $A = \{b\}$ is semi-closed set but not $\ddot{\mathcal{S}}_{\alpha}$ -closed.

Example 3.22

Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a, b\}, X\}$. Then $\ddot{G}_{\alpha}C(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$ and $SC(X) = \{\phi, \{c\}, X\}$. Here, $A = \{b, c\}$ is $\ddot{\mathcal{G}}_{\alpha}$ -closed set but not semi-closed.

Example 3.23

Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{a, b\}, X\}$. Then $\ddot{G}_{\alpha}C(X) = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$ and $G C(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$. Here,

- (i) $A = \{b\}$ is \ddot{g}_{α} -closed set but not g closed.
- (ii) B= {a, c} is g-closed set but not \ddot{g}_{α} -closed.

Remark 3.24

From the above discussions and known results in [6, 15, 16, 18], we obtain the following diagram, where $A \rightarrow B$ (resp. $A \rightleftharpoons B$) represents A implies B but not conversely (resp. A and B are independent of each other)

Where

A: semi-closed B: sg-closed C: gs-closed D: gsp-closed E: α -closed F: \ddot{g}_{α} -closed G: g α -closed H: α g-closed I: closed J: \ddot{g} -closed K: α -closed L: g-closed.

None of the above implications is reversible as shown in the above examples and in the related papers [6, 15, 16, 18].

4. PROPERTIES OF \ddot{g}_{α} -CLOSED SETS

In this section, we discuss some basic properties of \ddot{g}_{α} -closed sets.

Definition 4.1 [15]

The intersection of all sg-open subsets of (X, τ) containing A is called the sg-kernel of A and denoted by sg-ker(A).

Lemma 4.2

A subset A of (X, τ) is \mathring{g}_{α} -closed if and only if α cl(A) \subseteq sg-ker(A).

Proof

Suppose that A is \ddot{g}_{α} -closed. Then α cl(A) \subseteq U whenever A \subseteq U and U is sg-open. Let $x \in \alpha$ cl(A). If $x \notin \text{sg-ker}(A)$, then there is a sg-open set U containing A such that $x \notin U$. Since U is a sg-open set containing A, we have $x \notin \alpha$ cl(A) and this is a contradiction.

Conversely, let α cl(A) \subseteq sg-ker(A). If U is any sg-open set containing A, then α cl(A) \subseteq sg-ker(A) \subseteq U. Therefore, A is \ddot{g}_{α} -closed.

Proposition 4.3

For any subset A of (X, τ) , $X_2 \cap \alpha \operatorname{cl}(A) \subseteq \operatorname{sg-ker}(A)$, where $X_2 = \{x \in X = X_1 \cup X_2 : \{x\} \text{ is preopen}\}.$

Proof

Let $x \in X_2 \cap \alpha$ cl(A) and suppose that $x \notin sg-ker(A)$. Then there is a sg-open set U containing A such that $x \notin U$. If F = X - U, then F is sg-closed. Since α cl($\{x\}$) $\subseteq \alpha$ cl(A), we have int(α cl($\{x\}$)) \subseteq A \cup int(α cl(A)). Again since $x \in X_2$, we have $x \notin X_1$ and so int(α cl($\{x\}$)) = α . Therefore, there has to be some point α cl($\{x\}$) and hence α contradiction.

Theorem 4.4

A subset A of (X, τ) is $\ddot{\mathcal{G}}_{\alpha}$ -closed if and only if $X_1 \cap \alpha$ cl(A) \subseteq A, where $X_1 = \{x \in X = X_1 \cup X_2 : \{x\} \text{ is nowhere dense}\}.$

Proof

Suppose that A is $\ddot{\mathcal{S}}_{\alpha}$ -closed. Let $x \in X_1 \cap \alpha$ cl(A). Then $x \in X_1$ and $x \in \alpha$ cl(A). Since $x \in X_1$, int(α cl($\{x\}$)) = ϕ . Therefore, $\{x\}$ is semiclosed, since int(α cl($\{x\}$)) $\subseteq \{x\}$. Since every semi-closed set is sg-closed [Result 2.4 (1)], $\{x\}$ is sg-closed. If $x \notin A$ and if $U = X \setminus \{x\}$, then U is a sg-open set containing A and so α cl(A) \subseteq U, a contradiction.

Conversely, suppose that $X_1 \cap \alpha \operatorname{cl}(A) \subseteq A$. Then $X_1 \cap \alpha \operatorname{cl}(A) \subseteq \operatorname{sg-ker}(A)$, since $A \subseteq \operatorname{sg-ker}(A)$. Now $\alpha \operatorname{cl}(A) = X \cap \alpha \operatorname{cl}(A) = (X_1 \cup X_2) \cap \alpha \operatorname{cl}(A) = (X_1 \cap \alpha \operatorname{cl}(A)) \cup (X_2 \cap \alpha \operatorname{cl}(A)) \subseteq \operatorname{sg-ker}(A)$, since $X_1 \cap \alpha \operatorname{cl}(A) \subseteq \operatorname{sg-ker}(A)$ and by Proposition 4.3. Thus, A is \ddot{g}_{α} -closed by Lemma 4.2.

Theorem 4.5

An arbitrary intersection of \ddot{g}_{α} -closed sets is \ddot{g}_{α} -closed.

Proof

Let $F = \{A_i : i \in \land\}$ be a family of $\ddot{\mathcal{S}}_{\alpha}$ -closed sets and let $A = \bigcap_{i \in \land} A_i$. Since $A \subseteq A_i$ for each $i, X_1 \cap \alpha$ cl(A) $\subseteq X_1 \cap \alpha$ cl(A_i) for each i.Using Theorem 4.4 for each $\ddot{\mathcal{S}}_{\alpha}$ -closed set A_i , we have $X_1 \cap \alpha$ cl(A_i) $\subseteq A_i$. Thus, $X_1 \cap \alpha$ cl(A) $\subseteq X_1 \cap \alpha$ cl(A_i) $\subseteq A_i$ for each $i \in \land$. That is, $X_1 \cap \alpha$ cl(A) $\subseteq A$ and so A is $\ddot{\mathcal{S}}_{\alpha}$ -closed by Theorem 4.4.

Corollary 4.6

If A is a \ddot{g}_{α} -closed set and F is a closed set, then A \cap F is a \ddot{g}_{α} -closed set.

Proof

Since F is closed, it is \ddot{g}_{α} -closed. Therefore by Theorem 4.5, A \cap F is also a \ddot{g}_{α} -closed set.

Proposition 4.7

If A and B are \ddot{g}_{α} -closed sets in (X, τ) , then A \cup B is \ddot{g}_{α} -closed in (X, τ) .

Proof

If $A \cup B \subseteq G$ and G is sg-open, then $A \subseteq G$ and $B \subseteq G$. Since A and B are $\ddot{\mathcal{G}}_{\alpha}$ -closed, $G \supseteq \alpha \operatorname{cl}(A)$ and $G \supseteq \alpha \operatorname{cl}(B)$ and hence $G \supseteq \alpha \operatorname{cl}(A) \cup \alpha \operatorname{cl}(B) = \alpha \operatorname{cl}(A \cup B)$. Thus $A \cup B$ is $\ddot{\mathcal{G}}_{\alpha}$ -closed set in (X, τ) .

Proposition 4.8

If a set A is \ddot{g}_{α} -closed in (X, τ) , then α cl(A) – A contains no nonempty closed set in (X, τ) .

Proof

Suppose that A is \ddot{g}_{α} -closed. Let F be a closed subset of α cl(A) – A. Then A \subseteq F^c. But A is \ddot{g}_{α} -closed, therefore α cl(A) \subseteq F^c. Consequently, F \subseteq (α cl(A))^c. We already have

132 O.Ravi et al

 $F \subseteq \alpha \operatorname{cl}(A)$. Thus $F \subseteq \alpha \operatorname{cl}(A) \cap (\alpha \operatorname{cl}(A))^c$ and F is empty.

The converse of Proposition 4.8 need not be true as seen from the following example.

Example 4.9

Let $X = \{a, b, c, d\}$ with $\tau = \{\phi, \{b, c\}, \{b, c, d\}, \{a, b, c\}, X\}$. Then $\ddot{G}_{\alpha}C(X) = \{\phi, \{a\}, \{d\}, \{a, d\}, \{a, b, d\}, \{a, c, d\}, X\}$. If $A = \{a, b, d\}$, then α cl(A) $-A = X - \{a, b, d\} = \{c\}$ does not contain any nonempty closed set. But A is not \ddot{g}_{α} -closed in (X, τ) .

Theorem 4.10

A set A is \ddot{g}_{α} -closed if and only if α cl(A) – A contains no nonempty sg-closed set.

Proof

Necessity. Suppose that A is \ddot{g}_{α} -closed. Let S be a sg-closed subset of α cl(A) – A. Then A \subseteq S^c. Since A is \ddot{g}_{α} -closed, we have α cl(A) \subseteq S^c. Consequently, S \subseteq (α cl(A))^c. Hence, S \subseteq α cl(A) \cap (α cl(A))^c = ϕ . Therefore S is empty.

Sufficiency. Suppose that α cl(A) – A contains no nonempty sg-closed set. Let $A \subseteq G$ and G be closed and sg-open. If α cl(A) $\not\subseteq$ G, then α cl(A) \cap $G^c \neq \phi$. Since α cl(A) is a α -closed set (and hence semi-closed set) and G^c is a sg-closed set and open, α cl(A) \cap G^c is a nonempty sg-closed subset of α cl(A) – A by Corollary 2.5. This is a contradiction. Therefore, α cl(A) \subseteq G and hence A is \ddot{g}_{α} -closed.

Proposition 4.11

If A is \ddot{g}_{α} -closed in (X, τ) and $A \subseteq B \subseteq \alpha$ cl(A), then B is \ddot{g}_{α} -closed in (X, τ) .

Proof

Let G be a sg-open set of (X, τ) such that $B \subseteq G$. Then $A \subseteq G$. Since A is an \ddot{g}_{α} -closed set, α cl(A) \subseteq G. Also α cl(B) = α cl(A) \subseteq G. Hence B is also an \ddot{g}_{α} -closed in (X, τ) .

Proposition 4.12

Let $A \subseteq Y \subseteq X$ and suppose that A is \mathring{g}_{α} -closed in (X, τ) . Then A is \mathring{g}_{α} -closed relative to Y.

Proof

Let $A \subseteq Y \cap G$, where G is sg-open in (X, τ) . Then $A \subseteq G$ and hence $\alpha \operatorname{cl}(A) \subseteq G$. This implies that $Y \cap \alpha \operatorname{cl}(A) \subseteq Y \cap G$. Thus A is \ddot{g}_{α} -closed relative to Y.

Proposition 4.13

If A is a sg-open and \ddot{g}_{α} -closed in (X, τ) , then A is α -closed in (X, τ) .

Proof

Since A is sg-open and \ddot{g}_{α} -closed, α cl(A) \subseteq A and hence A is α -closed in (X, τ).

Proposition 4.14

For each $x \in X$, either $\{x\}$ is sg-closed or $\{x\}^c$ is \ddot{g}_{α} -closed in (X, τ) .

Proof

Suppose that $\{x\}$ is not sg-closed in (X, τ) . Then $\{x\}^c$ is not sg-open and the only sg-open set containing $\{x\}^c$ is the space X itself. Therefore α cl($\{x\}^c$) $\subseteq X$ and so $\{x\}^c$ is $\ddot{\mathcal{G}}_{\alpha}$ -closed in (X, τ) .

5. REFERENCES

- 1. Andrijevic, D. Semi-preopen sets. *Mahematics Vesnik*, 38: 24-32 (1986).
- 2 Arya, S.P. & T. Nour. Characterization of snormal spaces. *Indian Journal of Pure and Applied Mathematics*, 21(8): 717-719 (1990).
- 3. Bhattacharya, P. & B.K. Lahiri. Semigeneralized closed sets in topology. *Indian Journal of Mahematics*, 29(3): 375-382 (1987).
- 4. Caldas, M. Semi-generalized continuous maps in topological spaces. *Portugaliae Mathematica.*, 52 Fasc. 4: 339-407 (1995).
- 5. Crossley, S.G. & S.K. Hildebrand. Semi-closure. *Texas Journal of Science* 22(1971), 99-112.
- 6. Dontchev, J. On generalizing semi-preopen sets. Memoirs of the Faculty of Science Kochi University Series A Mathematics, 16: 35-48 (1995).
- 7. Levine, N. Generalized closed sets in topology. Rendiconti Del Circolo Mathematico Di Palermo, 19(2): 89-96 (1970).
- 8. Levine, N. Semi-open sets and semi-continuity in topological spaces. *American Mathematical Monthly*, 70: 36-41 (1963).
- Maki, H., R. Devi, & K. Balachandran. Generalized α-closed sets in topology. Bulletin of Fukuoka University of Education Part III, 42: 13-21 (1993).
- Maki, H., R. Devi, & K. Balachandran. Associated topologies of generalized α-closed sets and α-generalized closed sets. *Memoirs of* the Faculty of Science Kochi University Series A Mathematics, 15: 51-63 (1994).

- 11. Mashhour, A.S., M.E. Abd El-Monsef, & S.N. El-Deeb. On precontinuous and weak pre continuous mappings. *Proceedings of Mathematical and Physical Society of Egypt*, 53: 47-53 (1982).
- 12. Njastad, O. On some classes of nearly open sets. *Pacific Journal of Mathematics*, 15: 961-970 (1965).
- 13. Noiri, T., H. Maki, & J. Umehara. Generalized preclosed functions. *Memoir of the Faculty of Science Kochi University Series A Mathematics*, 19: 13-20 (1998).
- 14. Rajamani, M. & K. Viswanathan. On αgs-closed sets in topological spaces. *Acta Ciencia Indica*, XXXM (3): 21-25 (2004).

- 15. Ravi, O. & S. Ganesan. $\ddot{\mathcal{E}}$ -closed sets in topology. *International Journal of Computer Science and Emerging Technologies*, 2(3): 330-337 (2011).
- 16. Sheik, J.M. A study on generalizations of closed sets and continuous maps in topological and bitopological spaces. *PhD Thesis, Bharathiar University, Coimbatore, India* (2002).
- 17. Veera Kumar, M.K.R.S. \hat{g} -closed sets in Topological spaces. *Bulletin of Allahabad Mathematical Society*, 18: 99-112 (2003).
- 18. Veera Kumar, M.K.R.S. g[#] semi-closed in topological spaces. *Indian Journal of Mathematics*, 44(1): 73-87 (2002).