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Abstract: An analytical expression for the position of the infinitesimal body in the elliptic Sitnikov 
restricted four body problem is presented. This solution is valid for small bounded oscillations in case 
of moderate eccentricity of primaries. We have linearized the equation of motion to obtain the Hill’s 
type equation. Using the Courant and Snyder transformation, Hill’s equation is transformed into 
Harmonic oscillator type equation. We have used the Lindstedt - poincare perturbation method and 
again we have applied the Courant and Snyder transformation to obtain the final result. 
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1. INTRODUCTION 
 
The Sitnikov  problem is a special case of the 
restricted three body problem where the  two 
primaries of equal masses (m1 = m2 = m=1/2) are 
moving in circular or elliptic  orbits around the 
centre of mass under Newtonian force of 
attraction and the third body of mass m3 (the 
mass of the third body is much less than the 
mass of the primaries ) moves along the line 
which is passing through the centre of  mass of 
the primaries and is perpendicular to the plane of 
motion of the primaries. 

This dynamical model was first described  by 
Pavanini [1].The circular problem was discussed 
in detail by MacMillan [2] where he showed the 
integrability of the equation of motion with the 
aid of elliptic integrals which has been 
rediscussed by Stumpff [3]. Sitnikov [4] studied 
the existence of oscillating motion of the three 
body problem. Sitnikov problem has been studied 
by many scientists. Perdios et al [5] have studied 
stability and bifurcation of Sitnikov motion. Liu 
& Sun [6] have studied the mapping instead of the 
original differential equation and discovered that 
there exist a hyperbolic invariant set. Hagel [7] 
has studied the problem by a new analytical 
approach. It is valid for bounded small amplitude 
solution and small eccentricities of the primaries. 
Belbruno E., Llibre J. and Olle M. [8] have 
studied the family of periodic orbits which 

bifurcate from the circular Sitnikov motion. Jalali 
& Pourtakdoust [9] have studied the regular and 
chaotic solutions of the Sitnikov problem near the 
3/2 commensurability. Chasley [10] have studied 
the global analysis of the generalized Sitnikov 
problem. Faraque [11] has established the new 
analytical expression for the position of the 
infinitesimal body in the elliptic Sitnikov 
problem. His solution is valid for small bounded 
oscillation in case of moderate eccentricities of 
the primaries. Hagel [12] has studied “A high 
order perturbation analysis of the Sitnikov 
problem”. Perdios [13] has studied the manifold 
of families of three dimensional periodic orbits 
and bifurcation in the Sitnikov four body 
problem. Soulis et al [14] have studied the 
“Stabality of motion in the Sitnikov problem”. 
Soulis et al [15] has studied the periodic orbits 
and bifurcation in the Sitnikov four-body 
problem. Hagel [16] has studied an analytical 
approach to small amplitude solutions of the 
extended nearly circular Sitnikov problem.  
Boutis & Papadakis [17] have studied “The 
Stability of vertical motion in the N-body circular 
Sitnikov problem. Kovacs et al [18] studied the 
relativistic effects in the chaotic Sitnikov 
problem. 

In the present paper we have extended the 
study of Sitnikov problem to four body problem 
in elliptic case. We have considered the 
primaries moving in elliptic orbits of eccentricity 
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e. First we have derived the equation of motion 
and then we have linearized it to obtain the 
Hill’s type of equation .Using the Courant and 
Snyder transformation Hill’s equation is 
transformed into Harmonic oscillator type 
equation. Then we have used the Lindstedt - 
Poincare perturbation method and again we have 
applied Courant and Snyder transformation to 
obtain the final result. 
 

2.  EQUATION OF MOTION  
 
The system consists of three primaries with 
equal masses ( 1m = 2m  = 3m  = m =1/3). The 
fourth body has a mass ( 4m ) which is much less 
than the masses of the primaries. All of the 
primaries are at the vertices of an equilateral 
triangle [19]. The fourth body is confined to a 
motion perpendicular to the plane of motion of 
the three primaries which are equally far away 
from the barycentre of the system. All the 
primaries are moving in elliptic orbits around 
their center of mass O which is taken as origin 
.The fourth body is moving along the line 
perpendicular to the plane of motion of the 
primaries and passing through the centre of 
mass. In such a system the motion of the fourth 
body is one dimensional. We have assumed that 
()r t  is the distance of each of the primaries from 

the centre of mass, and we further assumed that 
()z t  is the distance of the fourth particle from 

the centre of mass. 
 
The equation of motion is  

 
2

32
2 2 2

.

( ())

d z z
dt

z r t
= −

+
   (1)  

 
Since ()r t  is given by the solution of the 

transcendental Keplar’s equation, it cannot be 
written in a finite closed form and is therefore 
given as an infinite power series in the primaries 
eccentricity denoted by e. We write 

1

() [ 1 (). ]n
n

n
r t a r t e

∞

=

= + ∑   

where 
1()r t cost= − , 

2

1
() [ 1 2 ]

2
r t cos t= − , 

3

3
() [ 3]

8
r t cost cos t= − , 

4

1
() [ 2 4]

3
r t cos t cos t= − ,  (2) 

In the present paper we have taken the semi-
major axis a  equal to unity. 

If 0e =/ and max ()z r t≤  for all t  we may 
expand the Equation (1) with respect to z and 
truncate the so obtain infinite power series after 
certain order in ().z t Expanding (1) in this, we 
get  
 

    (3) 
 
Further more we shall make restriction for 
sufficiently small value of e , we may expand the 
coefficients of function of z and 3z  with respect 
to e . Keeping the terms proportional to the m ne z  
where 4m n+ ≤  , we get  
              

2
3

1 22
() () 0.

d z g t z g t z
dt

+ + =      (4) 

                   
where, 
 

 (5) 
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2 2
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1,1() 3g t Cost=   (7) 

 

1,2

3 9
() 2

2 2
g t Cos t= +   (8) 

1,3

27 53
() 3

8 8
g t Cost Cos t= + .   (9) 

 

The most simple limiting case is the one of 
0e = and ()z r t<< . In this case the 

polynomial equation [3] can be approximated by 
the simple harmonic oscillator form 
 

2

2 0
d z z
dt

+ = ,   (10) 

 
with the solution 
 

0()z t z Cost= .    (11)     
 
So for sufficiently small value for the primaries 
eccentricity and sufficiently small ()z t  the 
number of passages of 4m  through the primaries 
plane during one primaries revolution it 
converges. 
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Taking the eccentricity of primaries constant 
and turn to the regime of such small values for  
()z t  that we may truncate the Equation (4) after 

the linear term in z , we get 
2

12 () 0
d z g t z
dt

+ = ,      (12)  

where 1()g t  is defined in equation (5). We first 
deal with this equation as a lowest order 
approximation to the nonlinear equation (4). 
Since 1()g t  is periodic in t  with period  2π  the 
Equation (12) is of Hill’s type. For this type of 
equation a closed theory exists and is known as 
Floquet theory. Hence the general solution of the 
Equation (12) can be written in the form 
 
() () [ () ]z t a t Cos t bϖ ψ= +   (13) 

 
where ()tϖ , the so-called Floquet Function is 
periodic with the period of the coefficient 
function 1()g t  i.e. 
 

() ( 2 ).t tϖ ϖ π= +   (14) 
 
The arbitrary real constant a and b  are 
determined by the initial condition for z and . 
Puting the value of ()z t  from the Equation (13) 
in the Equation (12) and comparing the 
coefficient of sin ψ  and cosψ , we get  
 

2

12 3

1
() 0

d g t
dt
ϖ ϖ

ϖ
+ − = ,   (15 a) 

 

2

1
.

d
dt
ψ

ϖ
=   (15 b) 

 
For 0(0)z z=  and   = 0, 
we have 

0

0 [ ]
z

a
Cos bϖ

= ,  

 
 (16) 

 
So the problem of solving the linearized 
equation (16) is reduced to finding a 2π  
periodic solution of the Equation (15a) for ()tϖ . 

Since we can express 1()g t  as a truncated 
power series in e , we can apply the same 
process to approach ()tϖ . We thus have the 
perturbative series  

2 3
(0) (1) (2) (3)() () () () () ...t t e t e t e tϖ ϖ ϖ ϖ ϖ= + + + +   (17) 

With the help of equation (15a) and (17), we get 
 

2
(0)

(0)2 3
(0)

1
0

d
dt
ϖ

ϖ
ϖ

+ − = ,  (18) 

 

  (19) 
 

  (20) 
 

 (21) 
 
By solving the above system we have to 
remember that all ( )nϖ  should be periodic with 
period2π . For (0)ϖ  a solution fulfilling this 
requirement is a simple constant, namely 
 

(0) (0,0)1ϖ ϖ= = ,   (22) 
 
as can be easily verified by inserting (22) in the 
Equation (18). To find the solution of the 
Equation (19), we insert (22) into Equation (19). 
The Function (1,1)()g t  is taken from (7), we get 

2
(1)

(1)2
4 3 0.

d
Cost

dt
ϖ

ϖ+ + =  (23) 

 
The general solution of this equation is given by  
 

(1) 1 22 2 .C Cos t C Sin t Costϖ = + −   
 
In order to fulfill the condition of a 2π  periodic 
solution we have to set 1C and 2C  to zero to 
obtain 
 

(1) (1),1() .t Cost Costϖ ϖ= − =  
 
Similarly; 

(2) (2),0

3
()

4
tϖ ϖ= = , 

and 
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(3) (3),1 (3),2() 3t Cost Cos tϖ ϖ ϖ= + . (24) 
Thus the Equation (17) gives 
 

 (25) 
 

where, coefficients ( ), ()m n tϖ  (m denotes the 
order in e and n the number of the associated 
Fourier component of ϖ )are given by 
 

(0),0 1ϖ = , (1),1 1ϖ = −  , (2),0

3
4

ϖ = , 

(3),1

9
8

ϖ −
=  ,  (3),1

3
.

8
ϖ =   (26) 

 

Now from the Equation  (15) 

2
0

() .
t dttψ
ϖ

= ∫    

Thus we have, 
 

(27)  
 

From the Equations (13), (25) and (27), we 
finally find the analytic solution 

0 ()
() ().

(0)

z t
z t Cos t

ϖ
ψ

ϖ
=    (28) 
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Fig. 1(a).  Sitnikov four body motion   for  e = 0.02,  
z = 0.01. 
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Fig. 1(b).  Sitnikov four body motion   for  e = 0.02,  
z = 0.01 

Here Figure-1(a) shows the graph of the solution 
z[t] over the time interval0 20t π< ≤ .  
(0) 0.01z =  and 0.02e = . We observe 

that the solution has a periodic envelope, and the 
Figure- 1(b) shows the same graph for the short 
time interval 119 128t< ≤ . 
 
 
3. TRANSFORMATION OF HILL’S 

EQUATION TO A HARMONIC 
OSCILLATOR 

 
When 2() 0g t = , the Equation (4) reduces to 
Hill’s Equation  
 

 (29) 
 
For this Equation we can write the solution as  
 
() () ().z t a t Cos tϖ ψ=       (30) 

 
Now we transform the dependent variables as 

.
zy
ϖ

=      (31) 

 
And let ψ  be the new independent variable then 
obviously ( )yψ  satisfies the Harmonic oscillator 
equation 
 

2

2
0

d y y
dψ

+ = .       (32) 

 
Now we apply this transformation to the 
nonlinear equation (4). From (31), we get 
 

2 2 2

2 2 22 .
d z d y dy d dy
dt dt dt dt dt

ϖ ϖϖ= + + (33) 

 
Inserting this into the Equation (4), we get  
 

 (34) 
 
We express the time derivatives of y by the 
derivatives of y  with respect to ψ  with the 
relation  

 2

1d
dt
ψ

ϖ
= ,   (35) 

 
we get 
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2

1
.

dy dy d dy
dt d dt d

ψ
ψ ϖ ψ

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

, 

2

2 2

2 4

2 . .
.

d y dy d
d y d d dt
dt

ϖ ϖ
ψ ψ

ϖ

⎛ ⎞
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⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (36) 

 
After putting these in (34), the new relation 
becomes 

2 2
3 3 6

1 22 2 () () 0.
d y dy g t g t y
d dt

ϖϖ ϖ ϖ
ψ

⎡ ⎤
+ + + =⎢ ⎥

⎣ ⎦
  (37) 

Applying the Equation (15 a) in the Equation 
(37), we get 
 

2
3 6

22 (( )) (( )) 0
d y y g t y t
d

ψ ϖ ψ
ψ

+ + = ,    (38) 

 
which is an equation of the form of a Harmonic 
Oscillator with a cubic perturbation .The explicit 
representation of t  as function of ψ  to the first 
order in e  is 
 

2t eSinψ ψ= − .     (39) 
 
From (25), we have 
 

6() 1 6t eCos tϖ = − . (40) 
 

Substituting the equation (6) and (40) into 
(38), we get                                    
 

( )
2

3
2

d y y eCos y
d

α β ψ
ψ

′ ′+ = + ,    (41) 

 
where, 
 

3 3
.

2 2
α β′ ′= , = −     (42) 

 
Once we get the solution of this equation we 

can determine z .The solution of the full 
equation can therefore be generated by further 
application of a perturbation determined by 
small perimeter , eε β ′=  .We assume from 
the outset that the solution depends only on the 
time parameter ψ  as appears in the Equation 
(41). In corporating eε β ′=  the Equation 
(41) becomes 

2
3 3

2 .
d y y y Cos y
d

α ε ψ
ψ

′+ = +  (43) 

Now, we express the solution as a perturbative 
series  
( ) 2

0 1 2, ( ) ( ) ( ) ...y y y yψ ε ψ ε ψ ε ψ= + + +  (44) 
 

Differentiating twice and putting the result 
into the above equation and equating the 
coefficient of like powers ofε , we get 

2
30

02

d y
y y

d
α

ψ
′+ = ,   (45) 

2
2 31

1 0 1 02 3
d y y y y Cos y
d

α ψ
ψ

′+ = + .  (46) 

 
The Equation (45) is of the form of duffing 

oscillator equation and the solution of this 
Equation can be found by perturbation method 
.The non linear term on the right hand side of the 
Equation (45) can be treated as a perturbation to 
the linear problem by introducing a formal 
perturbation parameterε . This is necessary 
because α ′  is much greater than 1, and can not 
be treated as perturbation parameter. So a formal 
parameter ε  is used to develop the solution and 
in the end, it is set to unity.  
 

Let the solution of the Equation (45) as a 
power series in the parameter ε  be 
 

2
0 0,0 0,1 0,2( ) ( ) ( ) ...y y y yψ ε ψ ε ψ= + + +     

 
By introducing the above mentioned 

parameter the Equation (45) becomes 
 

2
30

02

d y
y y

d
εα

ψ
′+ =  . 

 
It is easy to show that the solution of higher 

order equation for  0,1 0,2y y,  etc will contain 

secular term proportional to m mψ ,  being the 
order. Now we shall apply Lindstedt-Poincare  
method  to get the solution  .In order to 
implement this , we introduce a new independent 
variable :τ τ μψ= ,   
where 2

1 21 ...μ εμ ε μ= + + +  , and  
expand the solution in a power series of  

2
0 0,0 0,1 0,2: ( ) ( ) ( ) ...y y y yε τ ε τ ε τ= + + +

 
Differentiating twice and putting in the above 
equation and equating the like power of ε , we 
get the following equations 
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2
0,0

0,02
( ) 0

d y
y

d
τ

τ
+ = ,   (47)  

 
2 2

0,1 0,0 3
0,1 1 0,02 2

( ) 2 ( ).
d y d y

y y
d d

τ μ α τ
τ τ

′+ = − +   (48)  

 
The solution of the Equation (45) can be 

found by using the same strategy. We get the 
solution  
 

3 3

0

3 3
( ) ( ) (3 ).

64 64
A Ay A Cos Cosψ μψ μψ

⎡ ⎤
= + −⎢ ⎥
⎣ ⎦

(49) 

 
For sufficiently small value ‘A’, we can 

approximate 0( )y ψ  by  

0( ) ( ).y ACosψ μψ=    (50) 
 
And inserting this into the Equation (46), we get 
 
 
 (51)  
 
 

Where 
29

1
2

Aαλ
′

= − ,      (52) 

29
.

2
Aαδ
′

=        (53) 

 
For sufficiently small value of A, we have the 

approximate equation as  
 

2
1

1 12 ( ) 0
d y f y
d

ψ
ψ

+ = ,    (54) 

 
where 
 

1 1;1( ) ( )f fψ λ ψ= − ,⎡ ⎤⎣ ⎦  (55) 
 

1;1( ) (2 ).f Cosψ δ μψ=                (56) 
 

The Equation (54) is a Hill’s type equation. 
The general solution of the Equation (54) can be 
written as; 
 

1( ) ( ) .y Cosψ ρψ ξ=        (57) 
 

We can find the result upto the first order by 
applying the same process as in the Equation 
(12), we get 

24 4

1 (2 )
( )

4 ( )

Cosδ μψρψ
λ λ λ μ

= + ,
−

   

 
4

1 3 (2 )
1

10
Cos μψ

λ
⎛ ⎞≈ −⎜ ⎟
⎝ ⎠

    (58) 

 
and 

3
( ) . (2 ).

10
Sinλξ ψ λψ μψ

μ
= +     (59) 

Now, we shall again apply the Courant and 
Snyder transformation defined as 

1y
ζ

ρ
= ,         (60) 

to the Equation (54) and apply the similar 
procedure as in the derivation of the Equation ( 
29) and find  

2
3 3 3

2 . . ( ).
d Cos A Cos
d
ζ ζ ρ ψ μψ
ξ

+ =    (61) 

 
with 

3 2
. .

10
Sinξ μξψ

μλ λ
⎛ ⎞= − ⎜ ⎟
⎝ ⎠

  (62) 

 
We define a parameter χ  by 

ξχ
λ

= , (63) 

the use of which in the Equation  (61) results the 
following equation 

2
3 3 3

2 . . . . ( ).
d Cos A Cos
d
ζ λ ζ λ ρ χ μχ
χ

+ =  (64) 

Now, we shall put the value of 3ρ  upto the 
first order of  δ  i.e., 
 

( )
( )3

3

4

1 9
1 2 .

10
Cosρ χμ

λ

⎡ ⎤= −⎢ ⎥⎣ ⎦
  (65) 

Then we get, 
 

 

( ) ( )Cos Cosμ χ μ χ− − − −
9 7

1 5 1 3
160 160

( )Cos μ χ ⎤+ − ⎥⎦
3

1 .
20

  (66) 

 
Solution of the Equation (66) can be found 

using algebraic methods with the help of 
Mathematica. We obtain 
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(67) 
 
where 1C is a constant to be determined by the 
initial conditions .We choose 1C in such a way 
that 0 0.χ ζ= , = Hence, 

 

 
( ){ } ( ){ }

3 34 4

2 2

3 . .
.

20 1 1

A Aλ λ
λ μ λ μ

⎤⎧ ⎫⎪ ⎪⎥− +⎨ ⎬⎥− + − −⎪ ⎪⎩ ⎭⎦

 (68) 

 
Our next aim is to find out  1( )y ψ  using (60). 

To proceed, we note that to the first 

order ( )3
2 .

10
Sinχ ψ μψ

μ
= −  Since 

we have  2t eSin tψ = +   ,  

1() ()()y t t tρ ξ=                          
 and  

4

1 3 (2 )
( ) 1

10
Cos μψρψ

λ
⎛ ⎞≈ − ,⎜ ⎟
⎝ ⎠

  

we get 
 

4

3 (2 4 ))1
() 1

10

Cos t eSin t
t

μ μ
ρ

λ
+⎛ ⎞≈ −⎜ ⎟

⎝ ⎠
 (69)  

and then from (67), we get 
 

 
 (70)  

 
where 1C  is given by the Equation (68). And 
from the Equation (49), we get 
 

(71) 
 

Finally we obtain  z  by the Equation (31) 
 
z yϖ= 0 1 1(1 )( ).eCost y eyβ= − +   (72) 
 
where 0y and 1y  are given by the Equations 
(71), (69) and (70). Next we determine the 
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constant A . A little algebra provides that A  is 
related to the initial value of z , which is 0z  by 
the following: 
 

0.A z=  (73) 
 

Finally, we have to normalize the expression 
(72) to arrive at a solution which results in 0z at 

0t = . Carrying out this process results in the 
final expression for z   
 

 
 

( ) ( )

2
0

2 2

7 1 1
160 1 3 1 3

z
λ μ λ μ

⎧ ⎫⎪ ⎪+ +⎨ ⎬
− + − −⎪ ⎪⎩ ⎭

( ) ( )

2
0

2 2

3 1 1
.

20 1 1

z
λ μ λ μ

⎤⎧ ⎫⎪ ⎪− + ⎥⎨ ⎬
− + − − ⎥⎪ ⎪⎩ ⎭⎦

(74) 
 
 
 

where, 
 

( )1 1 5 2 10t e Sin t eSin tξ μ μ= + + +
( ) ( )3 1 5

2 4
10

Sin t e Sin t
μ

μ μ
μ
+

− + ,  (75) 

 
( )2 1 3 2 6t e Sin t eSin tξ μ μ= + + +  

( ) ( )3 1 3
2 4

10
Sin t e Sin t

μ
μ μ

μ
+

− + ,  (76) 

 
( )2 1 3 2 6t e Sin t eSin tξ μ μ= + + +

( ) ( )3 1 3
2 4

10
Sin t e Sin t

μ
μ μ

μ
+

− + ,   (77) 

 
( )4 1 5 2 10t e Sin t eSin tξ μ μ= − + −

( ) ( )3 1 5
2 4

10
Sin t e Sin t

μ
μ μ

μ
−

− + ,   (78) 

 
( )5 1 3 2 6t e Sin t eSin tξ μ μ= − + −

( ) ( )3 1 3
2 4

10
Sin t e Sin t

μ
μ μ

μ
−

− + ,  (79) 

 
( )6 1 2 2t e Sin t eSin tξ μ μ= − + −

( ) ( )3 1
2 4 .

10
Sin t e Sin t

μ
μ μ

μ
−

− +  (80) 

 
The solution (73) is plotted for 0 0.2z =  

and 0.4e =   in the figure 2(a) and 2(b).  
 

     
                      0 200t< ≤   
Fig. 2 (a). Sitnikov four body motion   for e = 0.04,  
z = 0.2. 
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                114 120t< ≤     
Fig. 2 (b).   Sitnikov four body motion   for e = 0.04, 
z = 0.2 
 
 
4.  CONCLUSIONS 
 
We have studied an elliptic Sitnikov problem, 
when extended to four body problem by two 
methods. In the first method we have found out 
the analytical solution in (28) which is presented 
in the figure-1(a) and 1(b). These are drawn for a 
long time interval and short time interval 
respectively. To perform the second method we 
have used the solution (28) and by applying the 
Courant and Snyder transformation, we get an 
equation of Harmonic oscillator type (32). The 
equation of the form of duffing oscillator (45) is 
obtained by truncating the equation after the first 
non-linear term. We have used the Lindstedt-
Poincare method to find the solution of this 
equation. The solution of zeroth order equation 
( 0ε = ) is applied to the first order equation to 
obtain again a Hill’s type of equation. Solution 
of this equation is obtained by the repetition of 
Courant and Snyder transformation. The final 
solution is obtained by implementation of 
inverse transformation to the dependent and 
independent variables (73). The graph of the 
solution so obtained, is plotted in the figure 2(a) 
and 2(b). These are plotted for the long and the 
short time of interval respectively.  

As we are dealing with the elliptic case of the 
Sitnikov four body problem, the Equation (29) is 
unperturbed system, term 3

2()g t z appears as 
perturbation in the Equation (4). Hence there is 
the perturbation in the z-direction as well. The 
effect of this nonlinear term is to shift the 
frequency as a function of the amplitude and to 
distort the trajectory ()z t . We intend studying the 
other aspects in our subsequent work.  

We observe that the nature of the graphs is 
oscillatory with amplitude and frequency 
depending on time.      
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