HETEROSIS IN COTTON G. HIRSUTUM L. UNDER TWO PRESOWING TEMPERATURE CONDITIONS.

Manzoer Ahmed Khan, Abdul Khaliq and Nazir Ahmed*

Heterosis in crosses involving local and exotic cotton varieties was studied in three characters, namely, number of bolls per plant, yield of seed cotton and ginning outturn under two presowing temperature regimes (5°C and room temperature) during normal crop season. The plants were grown to maturity in the pots. In general, the hybrids showed greater heterosis after treatment of seeds at low temperature than the control. The extent of heterosis was significantly higher for number of bolls and yield of seed cotton while there was a little effect on ginning outturn. Differences among the hybrids under both the conditions were quite apparent.

INTRODUCTION

Hybrid vigour has been commercially exploited in a variety of crops like maize, sorghum, onion and tomatoes. Efforts are also under way to explore this possibility in crops like wheat and cotton (Hutchinson et al., 1938; Singh et al., 1964; Baluch and Memon, 1966; Lee et al., 1967; Maran, 1968 and Moneium, 1972). Literature is also available on other crops. Out of all these species the cotton plant is very sensitive to changes in the environments both at the macro and micro-levels. Therefore, for utilization of hybrid vigour in cotton, the study of the hybrid vigour under different environmental regimes seems important. An investigation was made in hybrid vigour for different traits in cotton and results reported which could be of interest to cotton breeders.

MATERIALS AND METHODS

To estimate the effect of presowing temperature, 5°C applied for 24 hours versus normal F₁ seeds, the following crosses were made:

- 1: AC 134 × Sahit GL GL 4.
- 2. AC 134 × (539 × 1298 GL GL 4).
- 3. AC 134 × Delfos
- 4. AC 134 x (539 x 1298).

^{*}Bepartment of Plant Breeding & Genetics, University of Agriculture, Palesiabed.

- 5. [49F × Russian Mutant.
- 6. 149F x (539 x 1298 GL GL 4).
- 7. 149F x (539 x 1298).
- 8. 149F x (Coker 43 x 1517 C).

Five F₁ seeds of each cross were sown in each pot separately during 1975-76 which were later on thinned to two plants. Parents were also sown in separate pots. There were three replications in this trial and care was taken to have as normal a growth of the plants as possible. The data on the characters such as number of bolls per plant, yield of seed cotton and ginning outturn were collected and subjected to statistical analysis to ascertain the effect of experimental treatments on various traits.

Table 1: Average number of bolls per plant in F₁ generation under temperature stressed and non-stressed conditions.

And the second s	Stressed	conditi	on	Non-stressed condition			
	Mid parent	F ₁ hybrid	Percentage increase or decrease of F ₁ over mic parent	parent	hybrid	Percentage increase or decrease of F ₁ over mid parent	
AC134 x Sahil GL GL4	2.54	3.22	+26.77	2.79	2.00	-28,31	
AC134 × (539 × 1298 GL GL4)	1.81	2.31	+27.62	2.35	1.94	-17.44	
ACI34 × Delfos	2.89	2.09	-27.68	3.67	2,90	20.98	
AC134 × (539×1298)	2.01	3.50	+74.12	2.40	1.70	-29.16	
149F × Russian Mutan	t 3.46	4,83	+39.59	3:66	6,67	+82.24	
149F-× (539×1298 GL GL4)	2.13	2.38	+11.73	1,83	1.64	10.38	
149F × (539×1298)	2.08	5.00	+140.38	1.73	3.17	483.23	
149F x (Coker 43 x 1517	C) 1.41	2.50	+77.30	1.68	2.43	+44.64	
Mean percentage increase	e or de	crease :	±46.23	i i		+ \$2.98	

RESULTS AND DISCUSSION

Number of Boils per Plant:

Yield of Seed Cotton:

Table 1 showed that in the case of stressed condition all the crosses except AC 134 × Delfos gave better results when compared with mid-parental value. The maximum hybrid vigour, i. e., 140,38 per cent was shown by the 149F × (539 × 1298) cross.

In the case of non-stressed condition, the crosses, $149F \times Russian$ Mutant, $149F \times (539 \times 1298)$ and $149F \times (Coker 43 \times 1517 C)$ indicated hybrid vigour over their mid-parents to the extent of 82.24, 83.23 and 44.64%, respectively.

On an overall basis it was observed that hoterotic expression varied with the situation. Similar results were reported by Singh et el. (1964), Mirza (1969) and Moneium (1972) while working on cotton (G. hirsutum L.).

Table 2: Average yield of seed cotton (gms) in F₁ generation under temperature stressed and non-stressed conditions.

<u> </u>	Strassed	essed condition			Non-stressed condition			
	Mid parent	F ₁ hybrid	Percentage increase or decrease of F ₁ over mid parent.	Mid parent	F ₁ hybri	Percentage id increase or decrease of P ₁ over mid parent.		
AC134 × Sahil GL GL4	5.09	6.83	+34.18	5.07	4.40	-27.51		
AC134 x (539 x 1298	3.53	5.66	+60.33	5.27	4,80	- 8.91		
GL GL4)						80 (A)		
ACI34 × Delfos	5,98	4.68	-21.73	5.68	5.47	- 3.69		
AC134 × (539 × 1298)	4.08	7.75	+89.95	4.53	4.00	-11 .6 9		
149F x Russian Mutan	at 8.16	9.25	+13.35	8.03	8.12	+1.12		
149F × (539 × 1298	3.43	4.20	+ 22,44	4.39	5.09	+15.94		
GL GL4)								
149F x (539 x 1298)	5,25	11.30	+115.23	3.28	7.71	+133.06		
149F x (Coker 43 x 151)	7C) 3.04	5.25	+72.69	3,38	4.29	+26.92		
Mean percentage incres	200					+15.90		

The data given in Table 2 revealed that under stressed condition all the crosses except AC 134 \times Delfos gave higher yield of seed cotton as compared to mid parents. The crosses, $149F \times (539 \times 1298)$, $149F \times (Coker 43 \times 1517C)$, AC 134 \times (539 \times 1298) and AC 134 \times (539 \times 1298 GL GL 4), showed maximum heterosis for yield of seed cotton.

As to non-stressed condition, four crosses, namely, 149F × Russian Mutant, 149F × (539 × 1298 GL GL 4), 149F × (539 × 1298) and 149F × (Coker 43 × 1517C) proved better over their mid parents.

A comparison of both the temperature regimes revealed heterosis of verying degrees under each situation. Under stressed condition the magnitude of heterosis over mid parents varied from 13.35 per cent to 115.23 per cent and for the normal condition, it ranged from 1.12 to 135.06 per cent. Generally, a fair degree of heterosis was observed for this character, though heterotic expression was influenced by the environments. Similar results were reported by Lee et al. (1967), Djokie (1966), Baluch and Memon (1966), Sinoliuding and Chaudhry (1974), while working on cotton and wheat, and by Harrington (1946) on barley.

Ginales Outtern :

A reference to Table 3 revealed that in stressed condition all the crosses except AC 134 × (539 × 1298 GL GL 4) showed higher values for the ginning outturn as compared to their mid parents. The cross 149F × (539 × 1298) was the best and showed 17.49 per cent heterosis. In the case of non-stressed condition, it was observed that six crosses out of eight showed better performance than their mid parents.

From the foregoing account, it is obvious that different cross combinations showed differential response for boll number, yield of seed cotton and ginning outturn under stressed condition.

Table 3: Average ginning outsurn percentage for F₁ generation under temperature stressed and non-stressed conditions.

Name of Cross	Stress	sed cond	ition	Non-stressed condition			
Section of the sectio	Mid parent	hybrid i	Percentage increase or decrease of F ₁ over mid parent	Mid parent	hybrid	Percentage increase or decrease of P ₁ over mid parent	
AC134 x Sahit GL GL4	32.27	32.5	2 + 0.77	34.56	35.2		
AC134 × (539 × 1298 GL GL4)	34.42	33.5	1 - 2.64	31,36	33.91	8.13	
AC134 × Delfos	30.64	32.04	4 4.56	32.71	31.81		
AC134× (539×1298)	31.51	32.20	5 + 2.38	31.37	35.00	+11.57	
149F x Russian Mutant	31.39	36.04	+14.81	32.10	31.79		
149F x (539 x 1298	36.35	36.61	+ 0.71	30,50	31.2	5 + 2.45	
GL GL4)							
149F x (539 x 1298)	30.13	35.40	+17.49	28.94	31.89	54 7 5 04940040040000	
149F x (Coker 43 x 1517C)	29.74	34,52	+16.07	30. 2 0	35.00	1700000	
Moan percentage increa	se or de	ecrease :	+ 6.77			+ 5.83	

LITERATURE CITED

- Baluch, M. A. and A. M. Memon. 1966. Study of heterosis in G. hirsutum L. I-Yield of seed cotton.
 - W. Pak. J. Agri. Res. 4: 34-42.
- Djokie, A. 1966. Effect of seed rate and different N-rates on the productivity potential of some wheat varieties. Zhorn. Rod. Poljopri Pak. Univ. Beogr.
 - 14 (416): 23. Field Crop Abst. 22 (4), Item 72, 1969.
- Harrington, J. B. 1946. The differential response of spring sown varieties of Oats and barley to date of seeding and its breeding significance.

 J. Am., Sc. Agron. 38 (2): 1973-81.
- Hutchinson, J. B., V. G. Panse and P. D. Gadkari. 1938. Studies in plant breeding techniques in inheritance of agri. character in three interstrain crosses in cotton.
 - Ind. J. Agri. Sci. 8: 755-57.

Lee, J. A., P. A. Miller and J. O. Rawlings. 1967. Interaction of combining ability effects with environments in diallel crosses of upland cotton G. hirsuum L.

Crop Sci. 7: 477-88.

- Marani, A. 1968. Heterosis and F₂ performance in interspecific crosss among varieties G. hirsutum L. and G. arborium L. Crop Sci. 8: 111-13.
- Mirza, M.A. 1969. Genetic studies in some intraspecific crosses of G. hirsutum L.

M.Sc Thesis. W.P.A.U., Lyallpur.

Moneium, A. 1972. Genetic analysis of varietal differences in G. hirzutum L. under different environments.

M. Sc. Thesis, WPAU, Lyalipur.

Singh, G., A. S. Ajula, and A. J. Singh. 1964. Studies on heterosis and combining ability of intra hirsutum and hirsutum × barbadense crosses.

Ind. Cott. Gr. Res. 18: 121-37.

Sinclinding, K. and A. R. Chaudhry. 1974. Heterosis and combining ability in wheat under irrigation and moisture stress.

Expt. Agri. 10 (4): 241-45.