STUDIES ON REDUCTION IN GROWTH VIGOUR IN ADVANCED GENERATIONS OF MAIZE-TEOSINTE HYBRIDS

MANSUR MOHSIN GILANI AND MEDHAT K. HUSSAIN

Experiments were conducted to study reduction in vigour in advanced generations of maize-teosinte hybrids. The investigations showed that maize teosinte F₁ hybrid was superior to the maize parent in characters like dry weight, final height, number of tillers and number of leaves but not in number of tillers and leaves to teosints.

The maize-teosinte cross was superior to its reciprocal in characters like stem thickness, final height, dry weight and leaf area. The maize-teosinte F₁ was vigorous as compared to F₃ in many vegetative characters and F₄ generation hybrids, though less vigorous than F₃ in stem components, it exhibited a significant increase over the matter parent.

INTRODUCTION

In summer a variety of different fodders like Jowar (Sorghum vulgare Pers.), Bajra (Penniserum typholdeum Rich.), and cowpens (Vigna carjang Endl.) are grown yet the green fodder supply throughout the year is not regular. Some years back, the Department of Agriculture intoduced tensinte (Zea medicana) to meet the fodder requirements during the mouths of October and November, which is usually a southly period. Tensinto was expected to replace mains because of its autritive value and drought resistance. The farmers did not, however, may much attention to this new crop as it had certain drawbacks such as slow growing habit and hairy leaves. The plant tillers profusely; it is more slender and looks like maize until it tipens; the cobs are noticeably smaller than those of maize. The grains are also inferior. On the other hand, maize is much relished by cattle and is grown widely in the country for fodder and grain purposes. It out-balances all other fodder crops in average yield of dry matter and total digestible nutrients.

In view of its profuse tillering and multiple cob bearing, teosinte has been crossed with maize to increase the fodder yielding capacity of the latter. The hybrid gave high yield and matured earlier than teosinte, indicating the possibility of its commercial exploitation. But since hybrid seed involves

[&]quot;Bepertiment of Plans Breeding & Contilles, University of Agri; Lyalipur.

certain practical difficulties, it may be worthwhile to asses the merit of advanced generations for commercial use.

Investigations by Khan (1957), Malik (1958) and Ali (1959) on the growth vigour in F_1 , F_2 and F_3 hybrids revealed that maize-teosinte F_2 and F_3 hybrids though less vigorous than F_1 , exhibited a significant increase in vegetative characters over maize parent. Malik (1958) also noticed manifestation of hybrid vigour in F_2 and F_3 generations. Josephson (1953) made similar observations on F_1 and F_2 hybrids. This paper reports results of a similar trial on studies of hybrid vigour upto F_4 generations.

MATERIALS AND METHODS

The materials utilized in these experiments comprised local yellow maize, annual teosinte, reciprocal F_1 hybrids, F_2 , F_3 and F_4 generation hybrids of maize-teosine (open and self pollinated). Thus to determine the extent of hybrid vigour in F_4 generation the parents and hybrids grown were, maize, teosine, maize-teosinte F_1 , its reciprocal, maize teosine F_2 , F_3 and F_4 self and open-pollinated populations. The material was sown in a complete randomized block design with four replications.

Observations for various characters on selected plants were made as follows:

- a) Periodic growth rate of parents and hybrids were measured at a regular interval of seven days and continued till the growth finally ceased.
- b) The height of main axis was measured in wantimeteres from the ground level to the upper leaf axil.
- c) Time of flowering was studied by counting the number of days taken by the plant from germination to anthesis.
- d) The period of maturity was determined from the total number of days taken by the plant to mature its seed.
- e) Stem thickness was measured in centimeteres by means of a --Vernier's caliper,
- f) Number of tillers were counted, the number of tillers in maize was considered as zero.
- g) The number of leaves per plant was counted, and leaf area of the 4th, 5th and 6th leaves from the tip towards the basal portion of the main axis was measured in square centimeters with Integrator described by Vyvyan and Evans (1932). Mean of the three leaves was recorded as the average leaf area per plant. These data were analysed by the analysis of variance method.

REDUCTION IN VIGOUR IN ADVANCED GENERATION OF M & T HYBRIDS

RESULTS AND DISCUSSION

"F" values for the characters studied were statistically significant (Table 1) except for stem thickness.

TABLE 1: F values for the various Plant Characters.

Final Height	Time of Flowering	Stem Thick-	Tillering capacity	Number of Leaves	Leaf area	Dry weigh
4.04++	3 27++	2.05 N.S.	2.96+	4.93++	18.26++	57,4**

**Significant at 1 % level.

The performance data for the parental lines and hybrids for different characters are summarized in Table 2, 3 and 4.

Chowth Rate: The data presented in Table 2 show that the average relative growth rate was higher in all kinds of populations than the parents, with the exception of teosinte maize F_1 . Some hybrids such as maize-teosinte F_2

TABLE 2. Average relative: growth rate per day of the presental and hybrid populations

Population	Number of days from germination to final height		Log CH	rate per day (Log CHN)		
Maize Teosinte	104 118	168.29 139.99	8.188 7.205	9:05 0.06		
Maise x tecsinit F ₁	.90	210.74	7,348	0,08		
Teosinte z maiza F:	. m	177.12	5,358	0.04		
Maize x teosiate F ₂ (self)	194	160:79	7.747	0,06		
Maize x teosinte F ₂ (Ope s)	518	171:74	7:145	0.00		
Maine w trouble F; (Solf.)	P78	¥73.79	7.454	0.06		
Maige x testiate F ₃ (open)	90	173,79	7.220	0,08		
Majze x teosinte F ₄ (self)	III	163.99	7,386	0.06		
Maize x teosinte F ₄ (open)	90	193.80	7.342	0,08		

(open-pollinated) and maize-teosinté F_3 (self-pollinated) showed a growth rate equal to that of teosinte.

Plant Height: The plant height data presented in Table 2 revealed an interesting trend in growth. While the average height of all hybrids populations was greater than the average mean parental height, the early generation hybrids appeared to be more vigorous than the ones in advanced generations. For instance, F₁ was the tallest of all, the F₂ was generally taller than F₃ and F₄ while F₃ had an edge over F₄ generation.

Time of Flowering: A similar performance pattern was evident for the various hybrid generations for time taken to flowring. Mostly early generation hybrids were early in blooming compared to late generation hybrids. But all of them bloomed earlier than teosine. None of them bloomed earlier than maize except the Maize-teosine F₃ self pollinated generation.

Maize-teosinte F_4 self population was late in blooming by 12.75 days as compared to maize but 13.75 days earlier than teosinte. The F_4 and F_3 (Open-pollinated) populations flowered at the same time while F_3 (Self) was earlier in flowering than F_1 by 7.17 days.

The relative length of the photoperiod at which the different populations flowered showed that teosinte flowered mostly in the last two weeks of October ranging over 75-89 days; evidently teosinte exhibited response to short days period. Maize, on the other hand, fllowered within a range of 54-64 days. Maize-teosinte F₁ displayed a mid-way tendency.

Stem Thickness: Maize-teosinte F_1 and F_2 selfed hybrids had no difference in thickness. Maize-teosine F_1 stem was a little thicker than that of teosinte. However, teosinte-maize F_1 in the reciprocal cross almost approached the maize parent. The stem was substantially thicker than that of maize, highlighting the presence of cytoplasmic effects.

Number of Leaves: Highly significant differences were obtained for the number of leaves among parents and hybrids. None of the hybrids surpassed teosinte. However, the hybrids showed an appreciable increase over maize. Maize-teosinte F₄ selfed hybrid produced more leaves than F₁, F₂ and F₃ populations.

TABLE 3. Average performance for different characters of Parents, F1, F2 F3 and F4 hybrid generality.

Experimental Material	Final Height (cm)	Number of days taken for flowering	Stem ; Thickness cm.	Tillering capacity.	Number of leaves	Leaf area (sq. cm)	Dry well
Maize	148.91	58, 18	2.15	0	10.91	439.02	6.50
Teosinto	143.49	84.56	1.92	7.23	130.74	162.91	17
Maize x Teosinte F1	214.75	61.24	2.14	3.16	64.33	380.59	37.
Teosinte x maize F,	182.91	63.75	2.03	3.49	66.91	374.05	18.
Maize x teosinte F7(s)	156.91	68.41	2.01	2.33	40.99	288.52	23.
Maize I teosinte F,(0)		67.33	2.09	2.49	51.08	373.81	16.
Maize x teosinte F ₃ (s)		57.75	2:39	4.41	55.25	303.71	26.
Maize a teosiate F3(0)		71.16	1.98	3.49	65.75	298.64	21.
Maize x teosinte F4(8)	163.97	70.91	2.01	3.83	69.74	338.41	17.
Maize x teosinte F4(0)	193.91	68.75	2.09	3.41	69.33	396.43	. 16.
Cd1 at 5%	31.08	12.57	0.26	2.43	38.78	52.02	16.97
Can at 197	41.95	16.98	0.26	3.30	3	70.30	22.91

⁹ ê Open pollinated. Self pollinated.

Thale 4: Extent of hybrid vigour in F4 generation of maize x twoshne hybrid over-both parents.

Characters		Percentage increase (+) or decrease (-) of F. generation of maize x tensions by baid over						
0.2000		MAIZE				TBOŞINTE		
1.	Dry weight	+	172.30			- +	2.37	
2.	Final height	+	10,53			+	14.27	
3.	Stem thickness	-	. 3.72			+	7.81	
4,	Leaf area	-	22.91			+	197.72	
5,	Numbs of days taken to flower	+	21.92			8 <u>—</u> 3	16.24	
6.	Number of days taken to mature	+	40.93			, T	10.98	
7.	Number of tillers	4	300.83				47.02	

Leaf Area: The hybrid showed some beterotic effect for leaf area compared to teosinte. The F_1 of the reciprocal cross was almost similar in leaf area. F_4 (open pollinated) hybrid populations showed an increase over F_1 , F_2 and F_3 (self-pollinated) hybrids. Similarly F_4 (self-pollinated) generation was superior to F_2 and F_3 selfed populations. Teosinte-maize F_1 hybrid exhibited an increase of 211.14 sq. cm. over teosinte while maize-teosinte F_1 showed a decrease of 58.43 sq. cm. from maize but 217.68 sq. cm. increase over teosiate.

Dry Weight: Maize-teoxinte F₁ out-yielded both teosinte and maize by a good margin (Table 2) Teoxinte-maize F₁ hybrid and teosinte gave approximately the same dry weight. The advancedigeneration hybrids of maize-teosinte selfed populations also outyielded the maize parent.

These investigations have clearly shown that make-teorinte F₁ hybrid was superior to the maize parent in characters like dry weight, fine height, number of tillers and number of leaves, but appeared inferior to

REDUCTION IN VIGOUR IN ADVANCED GENERATIONS OF M & T HYBRIDS 101

teosinte in number of tillers and leaves. Maize-teosinte F_1 hybrid was more vigorous than its reciprocal in stem thickness, dry weight, leaf area and and final height while its reciprocal, teosinte-maize F_1 hybrid was superior only in number of tillers and leaves. Maize-teosinte F_3 and F_4 hybrids have also shown a significant increase over the maize parent. The hybrid vigour exhibited for different plant characters in F_4 generation is shown in Table 4.

In view, therefore, of the the generally better performance of both early and late generation hybrids than the parents, it may be concluded that both self and cross-pollinated hybrid may be commercially used with advantage.

LITERATURE CITED

- Ali, S. 1959. Reduction in growth vigour from F₁ to F₃ maize-teosinte hybrids. M.Sc. Agri. Thesis, University of the Punjab, Lahore.
- Josephson, L.M. 1959. Use of second generation "top cross" hybrid seed F.Mg, 28:322.
- Khan A.U. 1957. Some studies on maize-teosinte hybrids, M.Sc. Agri. Thesis University of the Punjab, Lahore.
- Malik, I.H. 1958. Some studies on hybrid vigour in F₂ and F₃ generations of maize teosinte hybrids. M.Sc. Agri. Thesis. University of the Punjab, Lahore.
- Vyvyan, M.C. and H. Evan. 1932. The leaf relation of fruit trees. A morphological analysis of distribution of leaf area on two nine years old apple trees. Jour. Pomol. Hott. Sci; 10:228.