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Abstract 

Compressed Sensing (CS) proposes a framework that any signal can be efficiently reconstructed by 

observing fewer measurements than required by the famous Shannon-Nyquist theorem, the observing signal must 

be sparse in some transform domain. Many methods have been proposed to further improve the quality of 

reconstructed images such as Group Sparsity, Structural Group Sparsity, Total-Variation etc. In this paper we 

unify tensor based approach with compressed sensing to efficiently reconstruct the original signal. Tensor based 

approach helps in preserving the intrinsic  structure of the signal. Two methods of tensor decomposition Tucker 

and CANDE/PARAFAC (CP) are unified to give the best low-rank representation of the sparse signal. 
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Decomposition 

1. Introduction 

Aim of compressed sensing is to reconstruct 

the original signal from set of many fewer 

required/sensed measurements then the proposed 

Shannon-Nyquist theorem, which states that in 

order to efficiently represent an analogue signal 

digitally one must keep the sampling at least twice 

the highest frequency of the signal [1, 2]. The 

sensed signal can only be reconstructed with the 

prior knowledge that signal was sparse (a signal 

having fewer non-zero elements) in some 

transform domain. Having low encoding 

complexity CS theory has gained quite a lot 

interest in the field of image processing. 

Compressed sensing differs from current method 

of compression as it introduces sparsity in a signal 

in some domain in which most of the coefficients 

are zero’s, it also introduces a framework for 

linear sampling operator in which sampling and 

compression happens simultaneously to avoid any 

oversampling. By introducing sparsity in the 

signal, it can be again reconstructed with high 

probability from few linear projections 

(measurements) by convex optimization 

techniques. 

CS based compression has strength in its 

asymmetric design i.e. by having simple 

computationally inexpensive encoder and a 

complex decoder, this asymmetric design is 

desirable in many signal and image processing 

applications such as taking satellite imaging where 

the encoder is less power consuming, the 

transmitted images can be decoded at the receiving 
station where computational resources have no 

constraints, this design is also desirable in 

situations where exposure to radiations over long 

period of time can harm the object such as X-Ray 

imaging [3], other applications include Magnetic 

Resonance Imaging (MRI) [4], radar imaging [5] 

and neutron imaging [6] and so on. 

In CS framework a signal having higher 

degree of sparsity (having only few 

measurements) in one basis will lead to higher 

quality of recovery in another basis but both the 

basis will be incoherent with each other [7]. For 

stationary signals transforms such as discrete 

wavelet transform (DWT) [8] or discrete cosine 

transform (DCT) [9] etc. can be used to find 

sparsity bases but since natural images are 

nonstationary and there exists no universal basis 

that gives sufficient sparsity for the entire signal, 

in some other basis a signal contain different 

degree of sparsity but that basis may not ensure 

higher quality of recovery, this remains one of the 

main challenge in CS to find a basis function for a 

signal that contains a high degree of sparsity. 

Using transforms such as wavelets or gradient 

DCT are non-adaptive and are signal dependent 

that leads to poor rate-distortion. 

CS framework has many obstacles in 

reconstruction, challenges from being 

computationally expensive to requiring huge 

memory for storing random sampling operators. 

Many algorithms have been introduced that take 

prior knowledge (such as statistical dependencies, 

structure, etc.) into account to improve 

reconstruction quality. Landweber iteration was 

proposed in [10] for fast reconstruction and 

removing blocking artifacts by imposing 

smoothness, in [11] Mun et al. combined the same 

framework of blocked CS with iterative projection 
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driven CS that added sparsity in the directional 

transform domain called BCS-SPL. Chen et al. in 

[12] extended the concept by combining residual 

and prediction to use the multihypothesis (MH) 

prediction, it takes the structural similarities 

(SSIM) from BCS-SPL reconstruction and use it 

as a stopping criterion. Zhang et al. [13] proposed 

structural group sparse representation (SGSR) by 

dividing an image into patches and taking non-

local self-similarity, the patches that are most 

similar are grouped together and are used for 

adaptive dictionary to sparsely represent the 

nonlocal patches. 

In this paper the approach used for [12] is 

used as initialization and coupled it with low-rank 

tensor decomposition. The reconstruction quality 

is improved by first dividing the image into 

patches with an overlap and stacking the patches 

that are most similar to each other, then using 

optimization problem we can find the true 

nonlocal self-similarity (NSS) from its initially 

reconstructed image. To achieve the tensor based 

reconstruction alternating direction method of 

multiplier (ADMM) algorithm is used to solve the 

above underdetermined problem. 

The remainder of this paper is organized as 

follows. In Section 2 a brief overview of CS and 

tensor related work has been presented. Design 

implementation of tensor based approach is 

provided in Section 3. Section 4 gives the design 

implementation of the proposed method with 

mathematical preliminaries, in Section 5 

performance of the proposed method is evaluated 

and Section 6 concludes this paper. 

2. Background 

2.1 Compressed Sensing 

A signal      of size   dimension is said 

to be sparse in the  c domain (where   is 

transform domain or basis and   is the vector that 

has sparse coefficients) if most of its elements in 

the transform domain are equal to zero, or it is 

nearly sparse if most of the elements are close to 

zero. The signal is reduced to   dimensions (such 

that    ) by using a sensing matrix   of 

dimensions    . Mathematically,       
where   is the measurement vector of size 

  dimensions. The goal is to recover   from   but 

recovering   is an ill-posed problem as the number 

unknowns exceeds the number of equations. By 

exploiting the fact that the original signal   was 

sparse then recovery of   is possible from these 

fewer linear measurements by solving the 

optimization problem. 

    
 
‖  ‖         ‖    ‖  (1) 

Note that   is sparse i.e. it has fewer non-zero 

elements (   ). The sensing matrix   is 

random matrix, ‖ ‖  is known as the    norm, 

usually set to   or  . The    norm to find the 

sparsest solution calculates all possible 

combinations of the non-zero elements in the 

vector mathematically      ‖  ‖         ‖ -  ‖
 
, 

this type of optimization is combinatorial complex 

i.e. NP-hard. To solve this system of non-linear 

equations    norm is used in which rather than 

minimizing the number of non-zeros entries 

instead take a vector and calculate its magnitude 

sum of absolute values for each entry    subject to 

same constraint. The exact reconstruction of   with 

high probability is only possible if   is sufficiently 

sparse and all other criteria of CS framework are 

met by both the transform domain and the sensing 

matrix. 

2.2 Tensor Based Approach 

A tensor is higher order generalization of 

scalars, vectors and matrices, the basic idea behind 

tensor factorization is to observe a tensor trough 

some latent representation. The order of a tensor 

  is the rank of a matrix which represents 

dimensions of a tensor (scalar is rank 0 tensor  , 

vectors are rank 1 tensors represented as {  } 

while matrices are rank 2 tensors   {   }), 
hence multidimensional matrix is also known as 

multidimensional matrix or  -way array, Similar 

to vectors of size   which are represented as an 

array of one-dimension having the length   with 

any given basis, tensors can be represented as 

multidimensional array with respect to given basis. 

The intuition behind tensors is that if you have 

some data in the form of tensors the goal is to find 

explanation for the data as simple as possible. 

Tensors assume that images are formed due 

to some multifactor concurrence that are content to 

linear analysis. Mathematically, tensors can be 

defined as multidimensional array   
            of order  , where each element of 

  is denoted as           where        .    is 

the     index of order   tensor of size    in 

mode   (in a tensor different dimensions are called 

modes). Tensors are defined over a set of vectors 

that are associated with different quantities that 

can be length height etc. in case of image these 

components are rows and columns. 
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3. Intrinsic Tensors Based CS 
Reconstruction 

After initial reconstructing of the image we 

want to improve our results, this can be achieved 

with help of tensors. To represent our 2D image in 

higher dimensions non-local self-similarity (NSS) 

can be used. NSS is another key feature of natural 

images in image reconstruction besides sparsity 

[14-16]. The concept behind using NSS is to 

gather together patches that have similar pattern 

but are spatially far from each other and stack 

them together in a form of 3D and to use high 

dimensional filtering of each group fragments to 

estimate the true signal. In natural images self-

similarity holds repetitiveness of the texture and 

its structure. This is useful in retaining sharpness 

and edges of the images in a nonlocal consistency. 

Usually tensor decomposition takes two 

form Tucker and Canonical Polyadic (CP) 

decompositions [27]. NSS will be combined with 

Tucker decomposition [17] [18] as well as CP 

decomposition [19] both are having insightful 

understanding of tensor sparsity will be blended 

together into tensor decomposition. 

First, we will briefly introduced the NSS 

framework in which the image   with size   is 

divided into   overlapped patches   
{    

 }   
  (where   is the pixel number of each 

patch), using block matching in [20] the patches 

that are most similar to a particular patch    are 

stacked togeather in a matrix form   . The original 

nonlocal similar patch matrix    is recovered as 

          
 
‖ ‖  

 

 
‖    ‖ 

  
(2) 

  is the tradeoff parameter, ‖ ‖  is the order-2 

sparsity of the true matrix  . By combining 

all   ’s we can reconstruct the estimated image  . 

The main challenge now lies in how to design a 

fitting sparsity measure for  . 

Designing a sparsity for vectors/matrices 

is an easy task where only few non-zero elements 

exists however implementing sparsity in tensors is 

relatively complicated because in tensors we also 

must define the intrinsic correlation along different 

tensor modes.  

Tucker decomposition (TD) also known 

as high order singular value decomposition 

factorizes a tensor   into multilinear polynomials 

such that it allows us to examine different 

factorization methods through some additional 

constraints, for an   order tensor. Tucker 

decomposition will factorize a tensor with one 

small core tensor   and   set of latent factor 

matrices (also known as bases) one in each mode, 

which can be mathematically defined as 

  ̂                      (3) 

where            
   is the core tensor which is 

dense but has dimensions less than the original 

tensor   the elements of core tensor shows the 

relation between components,    indicate the 

product between core tensor   and the bases 

matrix    in the     mode, and     
     (    

 ) are the corresponding    orthogonal bases 

known as Tucker rank (or n-rank) along the     

mode matrix unfolding of    of   dimenson if 

all the unfolded vector bases are full rank then the 

tensor   is said to be a full-rank tensor, tensor 

unfolding of   is computed by arrange all 

elements belonging to   into corresponding rows 

or columns. The core tensor is calculated as 

      (  )
   (  )

   (  )
 

    (  )
  

(4) 

In TD the core tensor unlike the matrix 

sigma ( ) in SVD (which is diagonal) does not 

have a special structure to it, it is a dense tensor 

that shows interaction between vectors       

and   .During unfolding process, the tensor is 

flattened into a matrix, for tensor unfolding TD 

uses the low-rank property for each of its modes, 

the mode   vector subspace are arranged to be the 

columns of the resulting matrix. Just like SVD the 

coefficients in the core tensor of TD are sorted in 

descending order along each tensor mode based on 

their importance to the tensor. The problem with 

such representation is that some of modes that 

might have strong correlation to the data but the 

coefficients in that mode will be decreasing very 

fast to zero, while some modes that are placed 

farther from zero because of low correlation to the 

data may contain a lot of non-zeros. Such 

representation of data throughs away a lot of 

useful information. Such understanding is useful 

for data compression they are less effective for 

signal reconstruction. 

CP decomposition has been well studied for 

a low-rank tensor decomposition. CP 

decomposition takes an   order tenor   
            and decomposes it into linear 

combination of sum of rank one tensors each rank 

one matrix is the vector loading in all modes, CP 

decomposition for a multivariate function can be 

defined as: 

 
  ∑   

 

   
   ∑   

 

   
       

      

(5) 
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Where   the Kronecker product, here   is 

known as tensor rank, and   is the vector of the 

weighs that imposes coefficients on Kronecker 

bases   . In CP decomposition the core tensor is 

super diagonal, but CP decomposition suffers from 

ill-posedness i.e. low-rank approximation does not 

exists. The core tensor being diagonal is desirable 

because only combination of a few affiliated 

tensor bases will be used, though the core tensor 

will be highly sparse but along each tensor mode 

the subspace will not be unique. Combining the 

sparsity understanding from both techniques, 

taking low-rank tensor property for core tensor 

from Tucker decomposition and sparse Kronecker 

bases from CP decomposition. Mathematically 

 
 ( )   ‖ ‖  (   )∏ ( ( ))

 

   
 

(6) 

The core tensor   is obtained by first taking 

CP decomposition to constraint the number of 

tensor modes representing objective tensor, once 

the number of modes restrained then we will take 

Tucker decomposition to regularize the low rank 

property of the subspace spanned on each tensor 

mode. Inspired by the work of  Xie et al. [21] used 

for denoising of multi-spectral images similar 

concept will be used in this paper for CS recovery 

and to the best of our knowledge this method has 

not been adapted for 2D images. 

4. Numerical Algorithm 
Implementation 

Here we discuss the implementation of the 

numerical algorithms. 

4.1 Alternating Direction Method of 
Multiplier (ADMM) Algorithm 

ADMM decomposes large global problem 

into parallel small sub-problems and by 

coordinating local solution it reaches to global 

convergence it merges converging property of 

multiple multiplier with dual ascent 

decomposition. Note that    in eq. (6) only can 

have discrete values which essentially makes it a 

combinatorial convex optimization problem which 

makes it quite difficult to solve due to non-

differentiability. We therefore will introduce first 

the penalty parameter   which is an effective way 

to solve the optimization problem  

 
   
 

   ( )   ∏    
 ( ( ))

 

   

 
 

 
‖    ‖  

(7) 

The penalty parameter      
 ⁄  controls the 

tradeoff between the two terms in (7). Then 

invoking alternating direction method of 

multipliers (ADMM) [22] [23] [28] to eq. (7) and 

   ( )  ∑    (|        |)         
 ( )  

∑    (  ( )   )  an effective way to tackle large 

scale optimization problem. For optimizing eq. (7) 

we first split it by introducing two auxiliary 

tensors    (     ). The optimization problem 

now becomes 

 
   
       

   ( )       
 ∏ (  ( )) 

 

   
 

 
 

 
‖            ‖ 

  

                          
   

            

(8) 

  ( )             ADMM algorithm uses a 

variant of augmented Lagrangian function [24] 

for   minimization. The augmented Lagrangian 

function with this form is: 

  (             )

    ( )       
 ∏ (  ( )) 

 

   
 

 
 

 
‖            ‖ 

  

 ∑ 〈               〉
 

   
 

 ∑
 

 

 

   
‖            ‖ 

 
 

Where      being Lagrangian multipliers,   is the 

non-negative dual update scalar step,    is the dual 

variable that must satisfy   
     . Now we can 

use the ADMM algorithm to minimize    ( ). 
Now that other parameters are fixed we can update 

  as a sub-problem by solving 

  (             ). 

 
   
 

    ( )  
 

 
‖           ‖ 

  
  (9) 

where   
 

    
 and   

    ∑ (      ) 

    
. Since 

                                    ‖   ‖ 
  ‖ ‖ 

           (10) 

On each mode, mode   produces   
 , now eq. (9) 

becomes: 

 
   
 

    ( )  
 

 
‖   ‖ 

  

              
     

  

(11) 
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  has a closed-form solution which can be solved 

as proven in [25]. As the first term is non-

differentiable we will use a closed-form solution 

        ( ) (12) 

Where     ( ) is a soft thresholding operator 

which is defined as: 

     ( )

 {

                             

    ( )(
   √  

 
)          

 

(13) 

where    | |       (  )
   (   )| |. In 

ADMM algorithm    is updated while keeping the 

other parameters fixed, we can also obtain the 

closed-form as follows: 

    
  

‖           ‖ 
  (14) 

Here taking    as an example,    is updated while 

keeping     and other parameters fixed. Using eq. 

(10) we can say (14) is equivalent to 

    
  
     

〈     〉 (15) 

where    (         (     )).Similarly, 

   can be updated in similar fashion 

    
  
     

〈     〉 (16) 

For eq. (16) we can obtain its closed-form solution 

by using the following conclusion 

Using eq. (12) we can update    as: 

   
      

  (17) 

where the SVD decomposition of         
 .  

Keeping other parameters and   where (   ) 

fixed    can be updated using the following 

equation 

    
  

     
 (  ( )) 

 
 

 
‖  

 

 
     ‖

 

 

 

(18) 

Where     (
 

 
∏    

 (  ( ))   ) and 

           . Now we can update   . 

 
  

       (  ∑   
 

  

) 
(19) 

where  

∑       (     (  )      (  )        (  )) 
  

 

and       (         )  
   is the SVD 

of        (  
 

 
  ). 

5. Performance Evaluation 

In this section, the performance of the 

proposed tensor based CS reconstruction is 

evaluated and compared with other existing CS 

recovery methods in terms of image reconstruction 

quality. Performance was evaluated on twelve test 

images shown in Fig. 4, results were compared to 

four CS recovery methods, block-based 

compressed-sensing with smoothed projected-

Landweber (BCS-SPL) [11] [29], multi-

hypothesis-BCS-SPL (MH-BCS-SPL) [12] [30] 

and total variance (TV) [26] [31] the codes used 

were provided by their authors. To evaluate the 

quality of reconstructed image peak signal-to-

noise ratio (PSNR) is used which measures the 

magnitude of noise to the peak value of the signal 

(for an 8-bit image the peak value is 255). 

Mathematically PSNR is defined as 

            (
    

√   
) 

where      stands for maximum peak value of 

the signal, and MSE stands for Mean Squared 

Error. In image processing we want to keep MSE 

as little as possible, therefore by having small 

MSE we get high PSNR which means our 

reconstructed image is nearer to the original 

image. Images used were of         pixels in 

size. Quality of the reconstructed images might 

vary due to random generation of the sensing 

matrix. Parameter   is used as tradeoff between 

two parameters is set to 10, the other parameter 

  depends on     where   in our experiment was 

set to         . It is to be noted that the values 

assigned to the parameters are general and can be 

changed depending on the type of image used. The 

evaluating metric used was PSNR to compare the 

results of the data set by varying sampling rate at 

0.1, 0.3 and 0.5 (0.1, 0.3 and 0.5 mean that 90%, 

70% and 50% percent of the samples were 

missing) for all 12 test images as shown in Table 

1-3. MATLAB was used to conduct the 

experiments. 

In our experiment, results show that using 

tensors in compressed sensing reconstruction 

shows quite promising results even at lower 

sampling rate Fig. (1-3). In Fig. 5 when sampling 

rate is 10 the reconstructed image of Lena is quite 

clearer, smooth and contain well preserved 

boundaries, where as in TV based algorithm at this 

sampling rate performed quite poor as it 

introduced staircase artifacts and over-smoothed 

the image neither does it suffer from blocking 
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artifacts which is the shortcoming BCS-SPL suffer 

due to its block based approach. Visual quality 

comparison of the recovered images is provided at 

the end of this section. 

Table 1: Comparing PSNR of different CS 

recovery method (dB) at sampling rate 

10% 

Method 
BCS-

SPL 
MH TV Tensor 

Airplane 23.15 23.67 22.47 23.53 

Barbara 24.69 25.21 21.75 25.42 

Boats 23.39 23.96 22.71 24.16 

Cameraman 21.87 22.39 23.40 22.79 

Couple 23.30 23.73 22.65 24.03 

Cub 20.67 20.68 23.02 20.70 

Einstein 26.91 27.87 25.73 28.42 

House 25.28 25.87 23.97 26.10 

Lena 25.98 26.41 22.92 26.76 

Mandrill 21.49 21.43 23.35 21.73 

Peppers 26.62 26.91 22.20 27.77 

Soyuz 19.86 23.72 24.44 23.70 

Avg. 23.60 24.32 23.22 24.59 

Table 2: Comparing PSNR of different CS 

recovery method (dB) at sampling rate 

30% 

Method 
BCS-

SPL 
MH TV Tensor 

Airplane 29.68 29.68 28.23 30.52 

Barbara 28.79 31.65 27.67 33.39 

Boats 28.06 28.99 27.75 30.23 

Cameraman 27.88 27.75 31.29 28.91 

Couple 27.28 28.50 27.33 30.36 

Cub 23.71 24.06 25.99 24.52 

Einstein 31.37 32.19 31.63 33.65 

House 29.84 30.98 28.66 32.38 

Lena 31.87 32.23 29.3 33.03 

Mandrill 24.44 25.16 26.05 25.92 

Peppers 33.47 33.47 28.86 35.59 

Soyuz 29.06 29.70 31.93 30.20 

Avg. 28.79 29.53 28.72 30.73 

Table 3: Comparing PSNR of different CS 

recovery method (dB) at sampling rate 

50% 

Method 
BCS-

SPL 
MH TV Tensor 

Airplane 33.64 33.64 33.80 35.16 

Barbara 31.70 34.81 32.11 37.03 

Boats 31.03 32.36 32.04 34.71 

Cameraman 31.34 30.48 32.32 32.66 

Couple 30.03 32.17 31.35 34.80 

Cub 25.81 26.29 27.08 27.19 

Einstein 33.91 34.81 35.66 36.62 

House 32.74 34.09 32.70 36.19 

Lena 35.49 35.55 33.78 37.10 

Mandrill 26.63 27.7 28.90 29.01 

Peppers 37.02 36.92 33.71 39.33 

Soyuz 34.07 34.13 37.83 34.74 

Avg. 31.95 32.75 32.61 34.55 

 

 

Fig. 1: PSNR comparison at 10% sampling rate 

 

Fig. 2: PSNR comparison at 30% sampling rate 

 18.0
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Fig. 3: PSNR comparison at 50% sampling rate 

Fig. 4: Test Images (256x256) L-R: ‘Lena’, 

‘cub’, ‘boats’, ‘barbara’, ‘airplane’, 

‘cameraman’, ‘couple’, ‘mandrill’, 

‘goldhill’, ‘peppers’, ‘soyuz’, ‘einstein’ 

 

Fig. 5: Reconstruction of ‘Lena’: at subsampling 

0.1 (PSNR [dB]) L-R: (a) BCS-SPL 

(25.98), (b) MH (26.41), (c) TV (22.92), 

(d) Tensor (26.76) 

 

Fig. 6: Reconstruction of ‘soyuz’: at subsampling 

0.3 (PSNR [dB]) L-R: (a) BCS-SPL 

(29.06), (b) MH (29.70), (c) TV (31.93), 

(d) Tensor (29.73) 

 

Fig. 7: Reconstruction of ‘cub’: at subsampling 

0.5 (PSNR [dB]) L-R: (a) BCS-SPL 

(25.81), (b) MH (26.29), (c) TV (27.08), 

(d) Tensor (27.19) 

6. Conclusion 

Compressed sensing is an alternative way to 

how we compress our data there is a lot of room 

for new research to improve the quality of CS 

reconstruction. In [1] and [2] Candes and Donoho 

proposed the idea that images can be reconstructed 

from only few observations with by using 

   minimization. Lu [10] used Landweber 

algorithm to improve his result. In [11] Fowler 

introduced block based approach to enhance 

quality of reconstructed CS images. 

In this paper tensor based CS reconstruction 

was proposed that considers both Tucker and CP 

decompositions along with NSS of natural images. 

The model was solved through means of ADMM 

algorithm. The concept of tensor decomposition is 

to represent the data in the form of tensor and seek 

 25.0
 28.8
 32.5
 36.3
 40.0

50% SAMPLING RATE 

BCS-SPL MH TV Tensor
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as simple explanation for it as possible. We do this 

by first finding similar patches in the initially 

reconstructed image by NSS and then decompose 

each patch as a sum of few tensor products. The 

idea behind this to have very concise 

representation of our tensors that makes 

subsequent computation efficient and gives 

intrinsic information about the data. Experimental 

results showed that tensor can be used to increase 

the quality of sparse image reconstruction. 
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