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Abstract 
A classification of the existing mathematical models of flow-injection (FI) manifolds based on the 
main principles on which they are built, have been proposed. Numerous mathematical models of 
FI systems employing ideas from different scientific areas (e.g. mathematical statistics, chemical 
engineering, chromatography) have been developed so far. The models have been compared with 
respect to their predictive power, the complexity of their mathematical treatment, and the 
requirements for computation time when applied to single-line, multi-channel and conjugated two-
line FI systems. It is concluded that the axially dispersed plug flow model deserves special 
attention because it offers an acceptable compromise between the conflicting requirements for 
maximal possible mathematical simplicity and maximal possible precision. Applicability of these 
existing flow-injection models to single-line, multi-channel and conjugated two-line systems for 
environmental monitoring have been discussed. 

 
Introduction 
 
Flow-injection (FI) first described by Ruzicka and 
Hansen [1] as an unsegmented flow technique in 
which a volume of liquid sample (typically 10-200 
µL is inserted into a moving liquid carrier stream, 
where it undergoes physical dispersion as it is 
transported to a flow-through detector for 
measurement. The response is in the form of a 
peak, the height of which is usually directly related 
to analyte concentration. The degree of sample 
dispersion is highly reproducible and is controlled 
by factors such as flow rate, manifold geometry, 
and tubing length and diameter. Though the 
principles on which FIA is based are well 
understood, and extensively implemented in the 
analytical practice, the development of its 
theoretical foundations summarized in numerous 
books [2-3] and reviews [4-5] is far from 
completed. The main reason for this fact is the 
complexity of the phenomena (e.g. diffusion, 
convection, chemical kinetics) taking place in 
flow-injection (FI) systems and their interrelation. 
Another obstacle in this respect is the variety of FI 
configurations (e.g. single- and multi- line systems 
with one or several confluence points, mixing 

chambers, dialysis and gas-diffusion modules, 
open-closed systems, etc.) and modes of operation 
(e.g., stopped, reversal, and sinusoidal flow). 
Numerous mathematical models based on various 
principles borrowed from different scientific areas 
(e.g., mathematical statistics, chemical engine-
ering, artificial intelligence, chromatography) and 
thus exhibiting different drawbacks and advantages 
have been developed. A sound classification 
incorporating all these models and based on the 
main principles on which they are built is required 
for allowing an impartial comparison between 
them. It will assist a researcher in choosing an 
appropriate model according to the concrete FI 
system to be modeled and the tasks which are 
supposed to be fulfilled by the model. 
 

The present review outlines a classification 
of the existing mathematical models of FI 
manifolds and considers their applicability for the 
description of the main component flow-through 
elements of three basic FI configurations, i.e., the 
single-line system, the multi-line system and the 
conjugated two-line system. The aim of this work 
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was to (i) develop a mathematical model enabling 
further optimization of analysis, and (ii) to validate 
the model on real experimental data. Present 
interest has also focused on the use of Flow 
Injection Analysis (FIA) for in situ monitoring of 
environmental matrices, particularly natural 
waters. 

 
Category of flow-injection models 
 

According to the way FI manifolds are 
mathematically modeled, they fall into two main 
classes known as the so-called �black box� and 
analytical experimental models (Figure 1). The 
types of models comprising these two classes will 
be briefly considered in the subsequent paragraphs. 
 

�Black box� models 
 

These models are frequently applied 
because of their relative mathematical simplicity 
which does not necessarily imply fast 
computations (e.g., neural network training may be 
extremely time consuming). The main drawbacks 
of these models are the requirements for a large 
number of experiments for their development, their 
applicability only to the conditions and manifold 
components used for the evaluation of their 
parameters, and their inability to allow a deeper 
insight into the physics and chemistry of the 
processes they describe. The �black box� models 
can be divided into several subgroups depending 
on the specific approach they utilize 
 

 
 

 
 
 

Fig. 1. Mathematical models of Flow-Injection systems 
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Regression equations 
 

The most frequently encountered in the 
scientific literature �black box� models are the 
well-known regression equations (e.g. 
polynomials) used to fit data by the method of the 
�least squares�. Such type of models have been 
utilized in the modeling of FI systems and allow 
some quantities of interest to be calculated for 
various sets of selected independent parameters of 
the systems using multiple regression analysis, 
These quantities of interest might be: the 
dispersion coefficient of Ruzicka  et al. [6-7]; the 
peak height in the case of isocratic [8] or gradient 
[8] flow; the travel time [9]; the baseline-to-
baseline time [10-11]; the appearance time of the 
maximum [7]; the dispersion volume [8]; the 
plateau width in the case of large sample volumes 
and non-reacting analyte or the time between peak 
maxima at both interfaces of a large reacting 
sample plug [12]; the rate of dilution in open-
closed [13] and flow-reversal [14] systems; the 
peak area [15]; a linear combination of peak height 
and mean residence time used as a response 
function in the experimental optimization of FI 
systems [16], the peak width in flow-reversal 
titrations [17]; and the axial dispersion coefficient 
[18]. 

 
Artificial neural networks 
 

Recently an advanced artificial intelligence 
technique known as the artificial neural networks 
approach has been successfully applied for the 
modeling of FI systems with photometric [19] and 
ion selective electrode array [20] detection. The 
modeling process is performed by a net of 
interconnected processing units (neurons). Every 
neuron receives a number of input signals which 
are weighted and summed. Then the result 
obtained is further operated by the transfer 
function of the neuron yielding an output signal 
which is confined in the interval between 0 and 1. 
By increasing the number of neurons up to a 
certain extent, above which the network starts to 
learn the noise, the predictive power increases. 
Unfortunately this is accompanied by extensive 
increase in the computation time required for 
training the network and this is in fact a limitation 
for the neural network approach in the modeling of 
FI systems. 

Impulse-response functions 
 

All the �black box� models discussed 
above consider the whole FI system as one 
indivisible module thus neglecting the individual 
influence of the main sections of the system on its 
overall behavior. For this reason it is difficult to 
extend the results obtained to other even similar 
flow configurations. In a series of papers Van 
Nugteren-Osinga et al. [21] have shown that it is 
much more advantageous to apply the �black box� 
principal to the main individual flow-through 
sections of a given FI manifold than to the system 
as a whole. This task has been performed by 
calculating the impulse-response function of 
different FI sections, (e.g., coiled and knitted tubes, 
mixing T-pieces [21], various measuring cells 
[22]) by means of a de-convolution procedure of 
the response curves of a given FI system obtained 
with and without the section concerned. 

 
Statistical moments and special functions 
 

The flow pattern in FI manifolds can be 
characterized by the concentration curve, c(t), 
monitored in the measuring cell which is 
frequently termed as peak in analogy with 
chromatography. In the absence of chemical 
interactions this curve gives information about the 
fraction of the fluid that spends a certain time in 
the manifold and can be defined as the residence 
time distribution function [23]. Since the specific 
details of the history of movement of fluid 
throughout the manifold are not necessary for 
calculating the moments of the peak this approach 
can be referred to the �black box�, principle. 
However, the residence time distribution function 
and its moments can provide useful information 
about the pattern of flow, e.g., molecular diffusion 
and convection effects, the existence of dead 
spaces, bypassing or non-uniform regions [24]. 
The moments which are most important and 
frequently used for characterization of peaks are 
the first moment about the origin, i for i = 1, and 
the second moment about the mean, 2. The former 
moment, known as the mean, defines the center of 
gravity of c(t) while the latter one, known as the 
variance, characterizes its width [25]. 

  00
/  dttct i

i 


                                             (1) 
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where t is time, C is concentration (mol m-3) and d 
is diameter. 
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2 /  dttct                    (2) 

The quantity 0 is the zeroth moment which 
multiplied by the volumetric flow rate gives the 
injected amount provided no sources and sinks are 
present in the manifold.  

 dttct i



00                                       (3) 

The statistical moments of experimentally 
measured peaks can be calculated by direct 
numerical integration, by the Edgeworth-Cramer 
method, or by relationships between the moments 
and other directly measurable peak characteristics 
(e.g., area, height or width at various heights) 
assuming a priori that the residence times of the 
fluid elements obey a certain law of distribution 
(e.g., Gaussian distribution). The numerical 
integration is straightforward and easy to 
implement especially in the case of computer data 
acquisition. 

 
Statistical moments can be determined also 

if the experimental peak is subjected to nonlinear 
least-squares fitting to a truncated Edgeworth-
Cramer series [26]. 

 
For large mean residence time (tm) the c(t) 

curve approaches a symmetrical Gaussian 
distribution curve, G(t), around tm (Eq. 4) and the 
following equality holds equality holds 1 = tm 
[24]. 
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where A is the peak area and  is the peak standard 
deviation. The variance in this case can be related 
directly to the peak width [27]. 
 
Analytical-experimental models 
 

An analytical-experimental model is built 
by uniting the mathematical descriptions of the 
flow pattern, the heat- and mass-transfer and the 
kinetics of the chemical reactions in the modeled 
system. In some cases only fundamental physical 
constants and directly measurable parameters (e.g., 
geometrical dimensions, flow rate) are used and 
the corresponding models are known as models 

based on first principles. However, very often the 
analytical-experimental models include parameters 
(e.g., axial dispersion and mass-transfer 
coefficients) which in most of the cases can be 
determined only on the basis of experimental data. 
Usually the development of an analytical-
experimental model requires a large amount of 
information for the system it describes and its 
solution is frequently accompanied by serious 
mathematical and computational difficulties. 
However, once built and solved the model can be 
used for simulation and optimization of the system 
it describes. Unlike "black box" models its 
application usually is not confined within the 
region of experimental data used for identification 
of the parameters of the model. 

 
Probabilistic models 

Random walk models. Models of Fl 
systems based on the random walk simulation 
approach [28] can be referred to as probabilistic 
models. After a successful utilization in the 
modeling of chromatographic processes this 
approach has been used both qualitatively [29] and 
quantitatively [28] for the description of single-line 
systems with constant [28] and sinusoidal [29] 
flow rates, and for systems with merging zones 
[30]. The random walk model considers the sample 
plug as a discrete number of individual molecules 
and the time interval of observation as consisting 
of a certain number of subintervals (t) of equal 
duration. During each subinterval, each molecule is 
transported down- stream by convection (e.g., 
laminar flow) and then takes a random step in x, y 
or z direction l = (2Dmt)1/2 where Dm is the 
molecular diffusion coefficient. 
 
Deterministic models 
 

In the majority of the models of FI 
systems, describing the behavior at macro level, 
each variable and parameter can be assigned a 
definite fixed number, or a series of fixed numbers, 
for any given set of conditions. For this reason 
those models fall into the group of the so-called 
deterministic models [31]. Most of them have been 
introduced in chemical engineering for the 
mathematical modeling of the physical and 
chemical processes taking place in various flow-
through equipment. They could be classified in 
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accordance with the independent variables they 
incorporate into distributed- and lumped-parameter 
models [31] (Fig. 1). For simplifying the 
mathematical solution when these models are used, 
for the mathematical description of Fl systems the 
sample injection has been very often approximated 
by a delta-function input. The solution of the 
model under this assumption can be related very 
easily to the solution of the model in the case of 
step-function input which is not typical for FI 
applications, i.e., Cdelta = dCstep / dt. 
 
Distribution parameter models (dispersion 
models).  
 

The dispersion models (Table-1) take into 
account detailed variations in behavior from point 

to point throughout the system. These models are 
represented by the so-called distributed-parameter 
models which are based on the analogy between 
mixing in actual flow and a diffusion process and 
as a result of this they use diffusion equations with 
modified diffusion coefficients [32]. In chemical 
engineering these models are useful mainly to 
represent flow in empty tubes and packed beds, 
which is much closer to the ideal case of plug flow 
than to the opposite extreme of back mix flow [33-
35]. Only two dispersion models have been utilized 
in the mathematical description of FI systems so 
far. These are the uniform dispersion model with 
radial and axial dispersion coefficients equal to the 
molecular diffusion coefficient and the axially 
dispersed plug flow model (Table-1). 

 

          Table 1. Dispersion models 

Name of the model and defining differential equation Parameters 

General dispersion model U = U(x, y, z), D = D(x, y, z) 
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General dispersion model for symmetrical tubular flow U = U(r), DL = DL(r), DR = Dr(x) 
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Uniform dispersion model U = U(r), DL = const., DR = const. 
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Dispersion plug flow model U = const., DL = const., DR = const. 
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Axially dispersion plug flow model U = const., DL = const. 
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 Uniform dispersion model 
 

The uniform dispersion model takes into 
consideration the real velocity profile and thus it 
will differ for flow-through sections with different 
geometry. In FI systems the most frequently 
encountered flow-through elements with simple 
geometry are straight and bent or helically coiled 
open tubes and flow-through sections with parallel 
plate flow (e.g., parallel plate flow-through 
measuring cells and dialyzers). The mathematical 
description of the dispersion process in them based 
on first principles will be considered in the 
subsequent paragraph. 

Straight open tubes with circular cross-section  
 

For straight open circular tubes with fully 
developed laminar flow the uniform dispersion 
model reduces to the well-known convective-
diffusion equation in cylindrical coordinates     
(Eq. 5).  
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where u is the mean linear flow rate in. the cross-
section of a tubular flow with radius a; x and r are 
the axial and radial coordinates, respectively; the 
flow remains laminar for values of the Reynolds 
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number, Re (= 2au / v, where v is the kinematics 
viscosity), up to 2100 [36]. 
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               (8)

Vrentas and Vrentas [37] have developed 
an asymptotic solution valid at arbitrary  for 
sufficiently low PeR and at arbitrary PeR for 
sufficiently low . On the other extreme, i.e., at 
high PeR and , is the solution of Westhaver [38] 
and Taylor [39] obtained under the assumption that 
the dispersion process is diffusion controlled and 
the axial diffusion is negligible. Under such 
conditions Eq. 5 is reduced to the much simpler 
from mathematical point of view axially dispersed 
plug flow model (Table-1) with axial dispersion 
coefficient (DL) defined by Eq. 6 (Table-2). 

 
Aris [40] as extended the Taylor�s theory 

for the case when the axial diffusion must be taken 
into account (Eq. 7 Table-2). It should be noted 
that the flow conditions encountered in FI systems 
are such that Dm « a2u2/48Dm and Eq. 7 (Table-2) is 
indistinguishable from Eq. 6 (Table-2). 

 
Table 2. Equations for the axial dispersion coefficient in laminar 

flow in open straight circular tubes. 
 

Eq. DL Ref. 
6 a2u2/(48Dm) 34, 39 

7 Dm + a2u2/(48Dm) 40 

14 1.314(DL)Taylor0.55 54 

15 1.314(DL)Taylor0.495 Present study 

 
Axially dispersed plug flow model (ADPFM).  

 
As the simplest dispersion model from a 

mathematical point of view the ADPFM    (Table-
1. has been widely used in the modeling of process 
and analytical flow-through (e.g., FI and 
chromatographic) systems. However, t should be 
pointed out that this model is best suitable for 
patterns of flow where the radial variation n 
composition is relatively small. For a limited 
number of initial and boundary condition (e.g., 
open system and open-closed system in the cases 
of step- or delta-function input) analytical solutions 
can be obtained [23-24]. 

 
To increase the generality of the results, 

the ADPFM (Table-1) is usually used in 
dimensionless form, i.e. 

where , X and C are the dimensionless time, axial 
distance and concentration, respectively, Pe = uL / 
DL is the traditionally used in chemical engineering 
length based Peclet number which characterizes 
the dispersion properties of the system, and S is the 
dimensionless source and (or) chemical reaction 
term. 

 
In the mathematical description of FI 

systems by the ADPFM, the flow system has been 
usually assumed as infinitely long (i.e., open 
vessel) and in most of the cases the introduction of 
the sample has been approximated by an ideal 
delta-function input, Eq. 9, [4, 5, 41-42]. 
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Under these oversimplified boundary and 
initial conditions the solution of Eq. 8 is the 
following: 
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The Peclet number or the axial dispersion 
coefficient can be directly related to the height 
equivalent to a theoretical plate (HETP) or simply 
the plate height (H) by the following relationships 
[43]: 

Pe = 2L / H 
and 

DL =Hu/2                                              (11) 
  
It should be pointed out that Eq. 10 is valid 

only if the sample volume is very small compared 
to the reactor volume [11]. Otherwise the sample 
injection should be approximated by a rectangular 
function which is obviously a more realistic 
approximation. 

 
The corresponding analytical solution of 

Eq. 8 in this case is the following [44]: 
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where  is the dimensionless length of the initial 
sample plug. 

pd
fM

ac
hin

e 
tri

al 
ve

rs
ion



Pak. J. Anal. & Envir. Chem. Vol. 7, No. 2, (2006) 89 

The models based on the �open vessel� 
assumption do not take into account the fact that in 
reality even the simplest Fl system consists of 
various flow-through sections (e.g., fore- and after-
sections, injection device, reactor, measuring cell) 
with different geometrical and dispersion 
properties. To overcome this serious drawback a 
mathematical model considering the flow system 
as consisting of several connected in series tubular 
sections with their own Peclet numbers has been 
developed by Kolev and Pungor [10]. This fluid 
system is described by a set of partial differential 
equations similar to Eq. 8. 
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where i are coefficients [45] which make possible 
the use of Eq. 13 for the description of flow 
systems comprised of tubular sections with various 
diameters and ci refers to the concentration in the 
ith flow section. The boundary conditions of Eq. 
12 are those of Wehner and Wilhelm [46]. The 
source terms and the initial conditions allow to 
take into account several methods of sample 
introduction (i.e., syringe and hydrodynamic 
injection [47] or injection valve). The model can 
describe analyte detection in the measuring cell by 
surface (e.g., ion-selective [48] or enzyme [49] 
flow-through electrodes) or volume (e.g., 
conductimetric [50] detection) detectors. The 
generality of the model outlined above allows the 
study of the influence of the main parameters of 
single-line FI systems on the output signal to be 
performed by model simulations [51]. 
 

The ADPFM has been successfully used 
for the mathematical description of not only single 
line FI systems but of multi-channel flow systems 
as well. A mathematical model has been developed 
by Kolev and Vander Linden [52]. It takes into 
account the geometrical dimensions and the 
dispersion properties of the main sections of the 
manifold, the mass transfer in the channels of the 
separation module and the characteristics of the 
membrane (thickness and diffusion coefficient 
within it). Because of its generality the model can 
be used for improving the performance of FI 
systems with membrane separation modules. Other 
possible applications of the model are in 

membrane technology and process engineering for 
characterizing of various membranes and for 
investigating the mass transfer in different 
dialysers. The absolute limits of mass transfer 
across the membrane in a parallel-plate dialyser set 
by the flow pattern in both channels have been also 
determined on the basis of the model mentioned 
above [53]. 
 
Straight tubes 
 

Ananthakri-shnan et al. [54] have fitted 
numerical results for various sets of values of  and 
PeR by the axially dispersed plug flow model thus 
defining the regions of applicability of Eqs. 6 arid 
7 (Table-2). An empirical relationship for DL in a 
- Per region where the Taylor-Aris theory does 
not hold (i.e.,  < 0.6) has been obtained (Eq. 14, 
Table-2). For convenience the axial dispersion 
coefficient is related to the theoretical equation of 
Taylor, i.e., (DL)Taylor (Eq. 6, Table-2). The 
predictions of Eq. 14 (Table-2) have been 
compared with experimental results reported 
elsewhere [55-56] (Fig. 2). An empirical equation 
similar to Eq. 6 with slightly different coefficients 
(Eq. 15,    Table-2) offers a better agreement with 
the same experimental data (Figure 2). 
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Fig. 2.  vs.  for laminar flow in straight open circular tubes. 

Experimental results: , [55]; , [56]. Calculated curves: 
1 = Taylor�s equation (Eq. 6), 2 = Eq. 14, 3 = Eqn. 15. 

 
Tank-in-series model  
 

The mathematical  description of the tank-
in-series model(TSM) in the case of N ideally 
mixed tank consists of N equations similar to 
equation 
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 Vt dc / dt =V(co � c)]                                         (16) 
 
in which the influent concentration of each tank is 
in fact the effluent concentration of the preceding 
tank. For simplifying the mathematical description 
process flow- through systems by the assumption 
for delta-function input has been usually employed 
[57]. 
 
c= [N (NӨ)N-1 / (N � 1) !] exp( - NӨ)                (17)  
   

Such an assumption will hold only if the 
sample volume is much smaller than the reactor 
volume. This condition is rarely valid in FI 
systems and the finite volume of the sample must 
be taken into account. Reijin et al [58] have 
derived the corresponding solution of the TSM 
which is expressed in general case by two Chi-
squared distribution functions. For large values of 
the number of tanks the Chi-square distribution can 
be approximated by Error function [59]. 
 

c=1/2co{erf[( N/2 )1/2 (Ө - 1) � erf [ ( N/2 )1/2   

(Ө - á � 1)}]                                                       (18) 
 

Kolev et al (60) have empirically 
approximated the exact solution of the TSM with 
finite sample volume  (Eq. 18) by multiplying the 
delta-function solution(Eq. 16) by á thus obtaining 
of much simpler than Eq. 12 expression. Such a  
simplification will be valid for N1/2á < 1.4 [57].  
   
Application of Existing Flow-Injection Models 
for Environmental Monitoring 
 

The mathematical models which described 
above can be useful for all types of FIA systems 
(e.g. FI, SI, BI, FIAAS, FI-HGAAS, SIA, PSA-
FIA-AAS, FIA-ICP, FIA-MS).  

 
The majority of the existing mathematical 

models outlined above view only single-line(SL) 
flow-injection systems with or without chemical 
reaction. Those system characterized by one 
influent and one effluent stream through which 
they contact with their environment. Generally 
speaking a SL FI system (Fig. 3a) can be 
considered as consisting of the following tubular 
sections connected in series or only of some of 
them[60]: (i) fore- and after-sections(e.g. tubes 
connecting the injection device with the reservoir 
of the carrier solution and the measuring cell with 

the waste); (ii) injection section, usually an 
injection valve but may be a syringe or a 
hydrodynamic injection section as well; (iii) 
reactor, the flow-through section connecting the 
injection device with the detector. This section 
may incorporate a straight or coiled tube, packed 
bed, single- bead string, knitted, or imprinted 
geometrically disoriented reactor and some 
connecting tube as well (Figure. 3a); (iv) 
measuring cell.  

 
If the method requires more than one 

reagent, additional streams can be merged with the 
carrier stream at suitable points in the manifold. 
Simultaneous FI can be performed by designing 
split line manifold in which the sample is injected 
into more than one flow channel and undergoes a 
different reaction in each channel. The manifold 
shown in (Figure 3b) is known as multi-channel 
system. This can be achieved either by splitting the 
carrier stream after injection or by connecting two 
injection valves in series in two separate reaction 
systems. 

 
As has been already pointed out the most 

distinctive characteristic of such a system 
(conjugated two-line) is the existence of a flow-
through section with two separate streams (donor 
and acceptor) which exchange matter (e.g. solute 
or solvent, or both of them) continuously along a 
common semi-permeable interface (e.g. 
membrane) (Figure.3c). Flow sections 
corresponding to such a description are the 
membrane separation modules for dialysis, gas 
diffusion or ultra-filtration incorporated in FI 
manifolds. Three different approaches have been 
utilized for the description of the simultaneously 
occurring processes of dispersion and mass 
exchange between the donor and the acceptor 
streams, i.e. the uniform dispersion model [61-62], 
the tanks-in-series approximation [63] and the 
axially-dispersed plug flow model [64-66].  

 
On the basis of the considerations made 

above it can be concluded that three of the 
cornerstones in the modeling of FI manifolds are 
the successful mathematical description of single-
line, multi-channel and conjugated two-line 
systems. Mathematical models of these three 
systems as well as of manifolds incorporating them 
outlined earlier will be discussed in view of finding 
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an appropriate model or combination of models 
offering an acceptable compromise between the 
contrary requirements for maximal possible 

mathematical simplicity and maximal possible 
precision. 

 
 
(a) 

 

 

 

 

 

(b) 

 

 

 

 

 

 

(c ) 
 
 
 
 
 
Fig. 3. Schematic representation of FI system. (a) Single-line system; (b) multi-line system; (c) conjugated two-line system 
 
 
Experimental Section 
Simultaneous determination of nitrite and nitrate 
in environmental water by FIA [67]. 
 

The aim of this study was to develop a 
simpler FI system for the simultaneous 
determination of nitrite and nitrate with 3-
nitroaniline using a copper column before the 
copperized cadmium column in the reaction 
manifold. In this paper 3-nitroaniline (NA) is used 
as the azo component and N-(1-naphthyl) 
ethylenediamine dihydrochloride (NED) as the 
coupling component.  

Apparatus  
 

The manifold for the simultaneous 
determination of nitrite and nitrate was made of 
poly(tetrafluoroethylene)(PTFE) tube(0.8mm i.d.) 
and linear dual connector were used (Fig. 3b). It 
consisted of a four-way pneumatically actuated 
injection valve (Rheodyne, Type 50 Teflon, Cotati, 
CA), and eight-channel peristaltic pump(Ismatec, 
Glattburg-Zurich, Switzerland) and a filter 
spectrophotometer[62] equipped with a fiber optic 
for the transmission of the light from the source to 
the flow cell (2ìL) for measurement. Data 
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processing and collection were performed with 
IBM-compatible PC by means of soft-ware written 
in Microsoft Q-Basic. The interface unit was an 
RTL 800 / 815 multifunction input/output board. A 
Shimadzu (Kyoto, Japan) Model UV  2100 double-
beam UV / VIS recording spectrophotometer was 
used for comparison of the results.  
 
Reagents and Solutions   
 

All chemicals were of analytical-reagent 
grade or the highest purity available. A 100 mL of  
stock nitrite solution (1 mg mL-1) was prepared by 
dissolving 492.8 mg dried sodium nitrite (Merck) 
in doubly distilled water. A 100 mL of stock nitrate  
solution (1 mg mL-1) was prepared by dissolving 
607.1 mg dried sodium nitrate (Merck) in doubly 
distilled water. The solutions were treated with a 
few drops of  chloroform and kept in a refrigerator 
for preservation. Working standard solutions were 
freshly prepared by diluting the stock solutions 
with 0.4 M NH4Cl.      
  
Procedure 
 

The standards (0.01 - 2.2 ìg mL-1 NO2
- or 

0.1 � 3.5 ìg mL-1 NO3
- ) and samples were injected 

into a carrier stream  by means of the peristaltic 
pump, P (Figure 3b). The sample was then split 
into two streams using a selector valve. One of the 
streams was directly treated with acidic mixed 
reagent (2000- 10,000 fold molar excess) and 
passed to the sample flow cell of a 
spectrophotometer  where the absorbance due to 
nitrite was measured at 535 nm. The other stream 
was passed through the reduction micro-column of 
copper (R1) and copperized cadmium (R2) column 
using a second selector valve where nitrate was 

reduced to nitrite.  The sample was then treated 
with the mixed reagent and the overall mixture was 
passed to the same cell of the spectrophotometer 
where the absorbance due to nitrite and nitrate was 
measured; nitrate was determined from the 
differences in absorbance values. The reaction was 
instantaneous and absorbance remains stable for 24 
h. The mixed reagent (NA + NED) was colorless 
and did not show any absorbance. 

 
Each filtered environmental water sample 

(45mL) was taken into a 50 mL calibrated flask 
and diluted to the mark with 0.4M NH4Cl. The 
concentration of nitrite and nitrate in 
environmental waters were evaluated from the 
peak heights by using calibration curves prepared 
from standards. 

 
Results and discussion 
 

In order to optimize the proposed flow-
injection manifold, the influence of the 
hydrodynamic and chemical parameters on the 
magnitude of peak height, the shape of the and the 
reproducibility of results was studied. Various 
analytical parameters, such as effect of acidity / 
pH, flow rate, sample size, dispersion coefficient, 
temperature, reagent concentration and interfering 
species were studied. The reliability of the 
procedure was tested by recovery studies. 
Environmental samples were analyzed by the 
proposed FIA method and by the standard AOAC 
method using sulfanilamide-NED. The results 
obtained are given in Table 3 and show that FIA 
method gives results very similar to the AOAC 
official method. The precision and accuracy of the 
method are very satisfactory. 

 
      Table 3. Determination of nitrate and nitrite in environmental water samples [67] 
 

Sample Concentration of nitrate (mgL-1) Concentration of nitrite (mgL-1) 
 Method  Method 
 FIA AOAC Error (%)  FIA AOAC Error (%) 
Tap water 2.01 2.01 0.00 0.01 0.01 0.00 

River water 0.69 0.68 1.40 0.02 0.02 0.00 

Spring water 20.4 20.2 0.98 0.01 0.01 0.00 

Sa water 7.65 7.70 0.65 - - - 

Lake water 1.73 1.70 1.70 0.05 0.05 0.00 
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Conclusions 
 

The analytical-experimental mathematical 
models for single-line, multi-channel and 
conjugated two-line FIA systems developed and 
experimentally confirmed in the present work 
show the following three main advantages: 

 
(1) They take into consideration the differences in 

the dispersion properties and the geometrical 
dimensions between the sections of the 
described flow systems. 

(2) They consider various ways of analyte 
injection and detection. 

(3) The models for FIA systems with detectors 
measuring the local or the average 
concentration are general also with respect to 
the type of the reactor used. The parameter 
identification procedure based on curve fitting 
can be utilized for the determination of the 
diffusion coefficients of the injected particles 
(e.g., ions, molecules) when the Taylor theory 
is valid for the reactor. The mathematical 
models outlined in this work could be used 
also for investigation of the flow pattern in 
chromatographic manifolds and in process 
systems composed of tubular sections. After 
the introduction of the necessary additional 
terms (e.g., chemical reaction terms, separation 
terms) in the equations comprising the models 
mentioned above, the models 
can be applied for the description of flow 
analysis and process systems in the case of 
chemical reaction or for the modeling of the 
processes in chromatography. 

 
Tank-in-series model(TSM) and the 

axially dispersed plug flow model (ADPFM) have 
gained considerable popularity in the description 
of not only process reactors but of analytical flow-
through systems as well as. Their main advantage 
in comparison with the models discussed above is 
that at the expense of relatively limited 
mathematical and computational efforts they can 
describe satisfactorily patterns of flow between the 
two extremes of ideally plug and back-mix flow. 
As per as they do not require any prior knowledge 
on the exact velocity distribution in the system 
they can be applied without limitations to all types 
of flow-through comprising  the existing in the 

analytical practice FI manifolds. The TSM and the 
ADPFM have been successfully used for the 
modeling of all single-line, multi-channel and 
conjugated two-line systems.    
 

FIA is a versatile technique. It is also a 
�milestone in analytical chemistry� [68]. Recently 
there have been considerable interests in process 
analytical chemistry, bio-analytical field, clinical 
chemistry, agricultural, pharmaceutical and 
environmental analysis. Therefore, the FIA 
systems should be successfully applied to the 
monitoring of trace amounts pollutants in 
environmental samples. 
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