
Punjab University Journal of Mathematics
(ISSN 1016-2526)
Vol. 52(5)(2020) pp. 31-45

On the Shape Factor of Emden-Fowler Equation of Higher Order and its
Numerical Solution by Successive Differentiation Method

Mariam Sultanaa, M. Khalidb and Fareeha Sami Khanc

a,b,cDepartment of Mathematical Sciences,
Federal Urdu University of Arts, Sciences & Technology, Karachi-75300, Pakistan,

Email: amarium.sultana@fuuast.edu.pk,bkhalidsiddiqui@fuuast.edu.pk,
cfareeha.samikhan@fuuast.edu.pk

Received: 16 September, 2020 / Accepted: 05 March, 2020/ Published online: 01 May,
2020

Abstract. The main objective of this work is to numerically solve three
types of Fourth order Emden-Fowler equations by using Successive Dif-
ferentiation Method (SDM) and to inspect its shape factor ‘k’ in detail.
Numerical solutions and graphical illustrations give a detailed insight into
the variation of numerical solution due to shape factor and evince the rea-
son why ‘k’ is always kept positive. The singularity term in Emden-Fowler
equations makes it difficult to find its analytical solution. It is usually ar-
duous to obtain the numerical solutions due to its singularity. Successive
Differentiation Method is easy to understand and give accurate results as
compared to its contemporary methods. Graphical illustrations have been
shown to establish our argument.
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1. INTRODUCTION

Study of Universe always fascinated mankind. There is plethora of secrets in this uni-
verse to be revealed. Mathematicians have paved ways in studying these phenomena via
developing some very famous equations. One of these equations is Emden-Fowler differen-
tial equation. It has a vast variety of applications in different fields of science. The general
form of this equation is written as

x−k dm

dxm

(
xk dn

dxn

)
y + f(x)g(y) = 0; where k > 0 (1.1)
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Eq.(1.1) developed by Wazwaz [21] has many interesting facts about it. For fourth order
Emden-Fowler equationn + m = 4, m,n ≥ 1, three cases arise as

(i) m = 3, n = 1 for which Eq.(1.1) becomes

x−k d3

dx3

(
xk d

dx

)
y + f(x)g(y) = 0; where k > 0 (1.2)

(ii) Form = 2, n = 2, Eq.(1.1) can be written as

x−k d2

dx2

(
xk d2

dx2

)
y + f(x)g(y) = 0; where k > 0 (1.3)

(iii) And the last possible case i.e.m = 1, n = 3, Eq.(1.1) becomes

x−k d

dx

(
xk d3

dx3

)
y + f(x)g(y) = 0; where k > 0 (1.4)

The termx−k describes the singularity of this equation atx = 0. Herek is the shape
factor of this equation and it shows the variations in the solution of the equation. Since
m + n decides the order of differential equation, therefore, a specific case of Eq.(1.1) with
order two is the famous Lane-Emden equation, that has applications in astrophysics, chem-
istry, physics etc. Further more for second order singular Lane-Emden equation ifg(y) is
an exponential function, then in stellar structures the density distribution of isothermal gas
sphere is represented by this Lane-Emden equation like in thermodynamics, it is considered
that the structure of the stars is the gaseous sphere. Another case of Eq.(1.1) in thermody-
namics can be ifg(y) = ym, wherem is known as the index and hence Eq.(1.1) describes
the thermal behavior of gases in spherical clouds. Another famous equation is derived from
Eq.(1.1), known as white dwarf equation, byg(y) = (y2 − C)3/2. This equation becomes
Lane-Emden equation with index3 for C = 0.
In [10] for the first time in history Fowler presented the idea of Emden-Fowler Equations
as an application of astronomical problem. Later in [11] and [12] Fowler discussed its
transformation into simpler forms and its special cases. In 1975 James [23] discussed the
other properties of this equation such as oscillation, continuability, stability, boundedness,
boundary value problem and asymptotic growth. Domoshnitsky et al. [8] discussed the
asymptotic behavior of solutions obtained for delay type Emden-Fowler equations. Clas-
sification of proper solutions were discussed by Kamo see [14]. Lie symmetry analysis of
Emden-Fowler equation was studied by Khalique [16]. In [1] Aslanov obtained the exact
solutions of the first kind of Emden-Fowler equation. In [3] Berkovich discussed the gen-
eralized Emden-Fowler equation by autonomization technique. Mohamed El-Gamel used
B-Spline method to analyze the numerical solution of Emden-Fowler Equation (see [9]).
Recently, Wazwaz [21] derived the fourth order singular Emden-Fowler differential equa-
tions and solved them numerically by using Adomian Decomposition Method.
To decipher the secrets in such equations, various methods have been developed and ap-
plied to analyze their behaviors in certain situations. Emden-Fowler have always been the
center of attention among numerous mathematicians due to its singularity property. Since
in most cases its analytical solution can not be obtained so numerical solutions are likely
to be acquired.
In [13] Freire et al. studied fourth order Emden-Fowler equation by using Lie and Noether
symmetries. In [17] Najeeb et al. solved various examples of fourth order Emden-Fowler
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equation by Haar based wavelet collocation method. Bildik et al. applied Optimal Per-
turbation Iteration Method (OPIM) and Modified Adomian Decomposition Method and to
obtain the numerical solution of Emden-Fowler equation [4], [5]. Details about the Opti-
mal Perturbation Iteration Method is given in detail in [7]. Bildik et al. also solved the
delay differential type equation of Emden-Fowler and compared their results with contem-
porary methods which were proven to be less accurate [6]. In [18] Khoury et al. used
Adaptive Collocation method for finding the numerical solution of Emden-Fowler singular
differential equation and claimed to be the accurate technique . In [2] Astashove described
the existence of oscillatory and non-oscillatory quasi-periodic solutions of higher order
Emden-Fowler equation. Randolph et al. [19] also studied two dimensional higher order
Emden-Fowler differential equation by Adomian Decomposition method. Recently, Ro-
gachev [20] theoretically proved the existence of solutions of generalized Emden-Fowler
equation by Lipschitz continuity and concepts of boundedness.
Among these methods is the Successive Differentiation Method. This method has yet been
proved to be the uncomplicated and effortless method for attaining numerical solutions of
singular differential equations. In [15], authors solved a variety of singular differential
equations by using SDM. In this paper, a fourth order Emden-Fowler differential equation
is solved numerically by Successive Differentiation Method (SDM). Three cases have been
solved and analyzed in this work. Importance of shape factork in feasibility of solution is
also discussed in detail.
This paper is divided into following parts. Section I contains the brief literature review of
this work. Section II is the mathematical formulation of Successive Differentiation Method
on fourth order Emden-Fowler differential equation. Section III has the major contribution
in this paper as it specifically discusses all three possible cases for fourth order Emden-
Fowler differential equation and its numerical approximations for differentf(x) andg(y)
in each case along with graphical illustrations and detailed discussion of shape factor. Sec-
tion IV is the last section that concludes the main results and observations of this paper.

2. MATHEMATICAL FORMULATION

Consider the nth order singular differential equation as

uk(x) = xR◦(x), R◦(x) = L(x) + N(x) (2.5)

which implies

uk(x) = xL
(
u(x), u

′
(x), · · · , u(k−1)(x)

)
+ xN

(
u(x), u

′
(x), · · · , u(k−1)(x)

)
(2.6)

with initial conditionsu(0) = α1, u
′
(0) = α2, u

′′
(0) = α3, ..., u(k−1)(0) = αk. On

differentiating Eq.(2.6) successively it becomes

uk+1(x) = xL
(
u
′
(x), u

′′
(x), · · · , u(k)(x)

)
+ xN

(
u
′
(x), u

′′
(x), · · · , u(k)(x)

)
+ R◦(x)

= xR1(x) + R◦(x)
(2.7)
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whereR1(x) denote the first derivative ofR0(x).

uk+2(x) =xL
(
u
′′
(x), u

′′′
(x), · · · , u(k+1)(x)

)
+ xN

(
u
′′
(x), u

′′′
(x), · · · , u(k+1)(x)

)
+

R◦(x)

=xR2(x) + 2R1(x)

uk+3(x) =xL
(
u
′′′

(x), u
′′′′

(x), · · · , u(k+2)(x)
)

+ xN
(
u
′′′

(x), u
′′′′

(x), · · · , u(k+2)(x)
)
+

R◦(x)

=xR3(x) + 3R2(x)
.

.

.

uk+n(x) =xRn(x) + nRn−1(x)
(2.8)

whereR2(x), R3(x), ..., Rn(x) are the second, third ,..., upto nth order derivatives. Now
apply the initial conditions on Eq.(2.8) to find the values of higher order derivative terms
i.e. u(k)(0) = β◦, u(k+1)(0) = β1, u(k+2)(0) = β2, u(k+3)(0) = β3,...etc. By expanding
the Taylor series ofu(x) it becomes,

∞∑
n=0

un(x)
n!

xn = α◦+α1x+α2
x2

2
+α3

x3

3
+ · · ·+β◦

xk

k!
+β1

xk+1

(k + 1)!
+β2

xk+2

(k + 2)!
+ · · ·
(2.9)

Therefore series given in Eq.(2.9) is said to be the numerical solution of nth order singular
differential equation in Eq.(2.5).

3. ANALYSIS OF SDM ON FOURTH ORDER EMDEN-FOWLER EQUATIONS

Fourth order Emden-Fowler equation is the best example for proving the accuracy of
any numerical method that claims to solve the singular ordinary differential equations.
Therefore in this section two examples of each case of fourth order Emden-Fowler equation
have been considered with differentf(x) & g(y) and solved numerically by SDM. Also
the changes occurring in numerical solution due to shape factork have been discussed for
each example.

3.1. Case-1.Forn = 3, m = 1, expanding Eq.(1.2) it becomes

yiv(x)+
3k

x
y
′′′

(x)+
3k(k − 1)

x2
y
′′
(x)+

3k(k − 1)(k − 2)
x3

y
′
(x)+f(x)g(y) = 0 (3.10)
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with initial conditiony(0) = y◦, y
′
(0) = y

′′
(0) = y

′′′
(0) = 0. Taking successive deriva-

tives of Eq.(3.10), it eventually becomes

g(y)f ′(x)− 3(k − 2)(k − 1)ky′(x)
x4

+
(k − 2)(k − 1)ky′′(x)

x3
− 6(k − 1)ky′′(x)

x3

+
3(k − 1)ky(3)(x)

x2
− 3ky(3)(x)

x2
+

3ky(4)(x)
x

+ y(5)(x) = 0

g(y)f ′′(x) +
12(k − 2)(k − 1)ky′(x)

x5
+

18(k − 1)ky′′(x)
x4

− 6(k − 2)(k − 1)ky′′(x)
x4

+

(k − 2)(k − 1)ky(3)(x)
x3

+
6ky(3)(x)

x3
− 12(k − 1)ky(3)(x)

x3
+

3(k − 1)ky(4)(x)
x2

−
6ky(4)(x)

x2
+

3ky(5)(x)
x

+ y(6)(x) = 0

.

.

.
(3.11)

Estimating the higher order derivative values atx = 0 from Eq.(3.11) and expanding them
by the Taylor series ofy(x) it turns out to be

y◦ − g(y)f(0)
4(k3 + 6k2 + 11k + 6)

x4 − g(y)f
′
(0)

5(k3 + 9k2 + 26k)
x5−

g(y)f
′′
(0)

12(k3 + 12k2 + 47k + 60)
x6 + · · ·

(3.12)

Series in Eq.(3.12) is known to be the numerical solution for case I. It gives an insight
about the existence of solution of Eq.(3.10). As it can be observed that the polynomial
term of the shape factor in the denominator shows that the solution for this problem does
not exist∀k ∈ Z−. To be more specific, by observing the role of shape factor and check the
accuracy of this method more precisely, two numerical examples for this case have been
solved.

3.1.1. Example 1.For the first case, letg(y) = e−4y(x), f(x) = 150x(4x10 − 17x5 + 4)
and initial conditions be asy◦ = 0,y

′
(0) = y

′′
(0) = y

′′′
(0) = 0. After applying initial

conditions the obtained Taylor series from Eq.(3.12) becomes

y(x) =
30

k2 + 5k + 6
x5 − 5(17k2 + 85k + 582)

3(k2 + 5k + 6)(k2 + 15k + 56)
x10 + · · · (3.13)

which is the general numerical solution of case I for arbitraryk. Now to verify the accuracy
of numerical solution letk = 2, then the series turns out to be

y(x) = x5 − 1
2
x10 +

1
3
x10 − 1

4
x10 + · · · (3.14)

This is exactly the series obtained from its exact solutiony(x) = ln(1+x5) see [22]. Fig.1
clearly seconds this argument. If the polynomials given in the denominator of Eq.(3.13)
are solved, they suggests that the existence of this numerical solution is only possible if
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FIGURE 1. Numerical solution obtained from SDM of example3.1.1
and its comparison with exact solution to verify the accuracy of SDM.

FIGURE 2. Graphical illustration of numerical solution of example3.1.1
for different values ofk. Higher deviation can be observed in this plot
due to greater number of terms of shape factor in the Emden-Fowler
equation.

k /∈ {−2,−3,−7,−8}. Fig.2 contains the graphical illustration of Eq.(3.13) for different
positive values ofk. Since in Eq.(3.10) there are three terms of shape factor involved i.e.
k(k− 1)(k− 2), therefore, the variational change in the solution is much higher and graph
deviates from its actual place as shown in Fig.2.

3.1.2. Example 2.For the second example for numerical approximation of case I, let
g(y) = y9(x), f(x) = 60(3x8 − 18x4 + 7) and initial conditions be asy(0) = 1,
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FIGURE 3. Numerical series solution obtained for example3.1.2 by
SDM compared by its exact solution to verify the accuracy of SDM.

y
′
(0) = y

′′
(0) = y

′′′
(0) = 0. Then Eq.(3.12) transforms into

y(x) =1− 105
k3 + 6k2 + 11k + 6

x4+

135(2k3 + 12k2 + 22k + 747)
2(k3 + 6k2 + 11k + 6)(k3 + 18k2 + 107k + 210)

x8 + · · ·
(3.15)

which implies to be the general numerical solution of this example for arbitraryk. For
k = 4, Eq.(3.15) converts into the series as

y(x) = 1− 1
2
x4 +

3
8
x8 + · · · (3.16)

This numerical series solution is exactly the same as the series of exact solution of Eq.(3.10)

i.e. y(x) =
1√

1 + x4
see ( [22]). Also Fig.3 verifies this comparison and confirms the

efficiency of SDM. Polynomial term in the denominator of the general solution presented
in Eq.(3.15) describes its existence. This polynomial suggests that the integrity of Eq.(3.15)
is only possible ifk /∈ {−1,−2,−3,−5,−6,−7}. Fig.4 depicts the graphical illustration
of Eq.(3.15) for different positive values ofk. Since in Eq.(3.11), there are three terms
of shape factor involved i.e.k(k − 1)(k − 2), therefore, graph deviates from its original
position and high variation can be observed.

3.2. Case-2.Forn = 2, m = 2, Eq.(1.3) is acquired and by extending its derivative terms
it develops into

yiv(x) +
2k

x
y
′′′

(x) +
k(k − 1)

x2
y
′′
(x) + f(x)g(y) = 0 (3.17)
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FIGURE 4. Graphical representation of numerical solution of example
3.1.2for different values of k. Higher deviation can be observed in this
plot due to greater number of terms of shape factor in the Emden-Fowler
equation.

with initial conditiony(0) = y◦, y
′
(0) = y

′′
(0) = y

′′′
(0) = 0. Taking successive deriva-

tives of Eq.(3.17) following higher order equations are obtained

f(x)g(y) +
(k − 1)ky′′(x)

x2
+

2ky(3)(x)
x

+ y(4)(x) = 0

g(y)f ′(x)− 2(k − 1)ky′′(x)
x3

+
(k − 1)ky(3)(x)

x2
− 2ky(3)(x)

x2
+

2ky(4)(x)
x

+ y(5)(x) = 0

.

.

.
(3.18)

When initial conditions are employed on Eq.(3.18) and expanded by Taylor series it emerges
as

y◦ − g(y)f(0)
12(k2 + 3k + 2)

x4 − g(y)f
′
(0)

20(k2 + 5k + 6)
x5 − g(y)f

′′
(0)

60(k2 + 7k + 12)
x6 + · · · (3.19)

Upon analyzing this general solution, it is observed that the polynomials of shape factor in
denominator suggests that solution for this problem does not exist∀k ∈ Z−. Now, let’s
consider the two numerical examples for this case with differentf(x) & g(y) and two terms
of shape factor involved in Emden-Fowler equation i.e.k & (k − 1) to understand the role
of shape factor more precisely and to check the competence of SDM in this case.

3.2.1. Example 1.Considerg(y) = e−4y(x), f(x) = 36x2(35x12 + 146x6 + 35) in
Eq.(3.17) and initial conditions asy(0) = y

′
(0) = y

′′
(0) = y

′′′
(0) = 0. Then for this

example Eq.(3.19) can be transformed into the general solution for arbitraryk that is

y(x) = − 42
k2 + 7k + 12

x6 − 6(73k2 + 511k + 3816)
11(k2 + 7k + 12)(k2 + 19k + 90)

x12 + · · · (3.20)
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FIGURE 5. Numerical solution obtained from SDM of example3.2.1
compared by its exact solution to check the accuracy of SDM.

The polynomial term in Eq.(3.20) interprets that the existence of this solution is only pos-
sible if k /∈ {−1,−2,−3,−5,−6,−7}. To investigate whether Eq.(3.20) is the accurate
numerical solution or not, putk = 3 in Eq.(3.20) to get

y(x) = −x6 − 1
2
x12 + · · · (3.21)

which is exactly the series of exact solutiony(x) = ln(1 − x6) (see [22]). Hence this
shows that SDM is a competent method for handling singular differential equations. Fig.5
shows the comparison of exact solution and numerical solution by SDM and this graphical
comparison also supports the argument. Fig.6 sketches the numerical solution in Eq.(3.20)
for different values of positive k’s. A mild change can be observed in Fig.3.10 from its
actual place due to the less number of shape factor terms i.e.k(k − 1) in Emden-Fowler
equation.

3.2.2. Example 2.Now, consider the second example for case 2 to beg(y) = y9(x),
f(x) = 25x(−49x15 + 540x10 − 342x5 + 16) and initial conditions asy(0) = y

′
(0) =

y
′′
(0) = y

′′′
(0) = 0. Then the obtained Taylor series from Eq.(3.19) is the general solution

for this problem for arbitraryk i.e.

y(x) = 1− 20
k2 + 5k + 6

x5 +
5(19k2 + 95k + 274)

(k2 + 5k + 6)(k2 + 15k + 56)
x10 + · · · (3.22)

Eq.(3.22) has polynomial in the denominator that shows that the only possibility of exis-
tence of this solution is ifk /∈ {−2,−3,−7,−8}. In Fig.8 the graph has been plotted for
different values of positivek to show the mild variation occurring in the solution due to
the terms involved in Emden-Fowler equation. Fork = 2 the general solution in Eq.(3.22)
becomes

y(x) = −x5 − 1
2
x10 +

1
3
x15 − 1

4
x20 + · · · (3.23)
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FIGURE 6. Graphical illustration of numerical solution of example3.2.1
for different values ofk. Mild deviation can be observed in this plot due
to two terms of shape factor in the Emden-Fowler equation.

FIGURE 7. Numerical solution of example3.2.2 obtained from SDM
and compared by its exact solution. The plot here clearly verifies the
efficiency of SDM.

which is exactly the series of exact solutiony(x) =
1√

1 + 2x5
(see [22]). In Fig.7 the

comparison of exact and numerical solution describes the accuracy of SDM.

3.3. Case-3.Last case of fourth order Emden-Fowler under discussion is from Eq.(1.4)
for whichn = 1, m = 3, Eq.(1.4) becomes

yiv(x) +
k

x
y
′′′

(x) + f(x)g(y) = 0 (3.24)
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FIGURE 8. Graphical illustration of numerical solution example3.2.2
for different values ofk. Mild deviation can be observed in this plot due
to less number of terms of shape factor in the differential equation.

with initial conditiony(0) = y◦, y
′
(0) = y

′′
(0) = y

′′′
(0) = 0. Taking successive deriva-

tives of Eq.(3.24) it becomes

xyv(x) + (k + 1)yiv(x) + xg(y)f
′
(x) + f(x)g(y) = 0

xyvi(x) + (k + 2)yv(x) + xg(y)f
′′
(x) + g(y)f

′
(x) = 0

.

.

.

(3.25)

Now applying initial conditions and then by expanding via Taylor series its general solution
turns out to be

y◦ − g(y)f(0)
24(k + 1)

x4 − g(y)f
′
(0)

60(k + 2)
x5 − g(y)f

′′
(0)

240(k + 3)
x6 + · · · (3.26)

This clearly depicts that the polynomials of shape factor in denominator suggests that the
solution for this problem does not exist∀k ∈ {−1,−2,−3, · · · }. To establish this argu-
ment lets take two numerical examples of this case as well.

3.3.1. Example 1.For the first example of numerical approximation of third case of Emden-
Fowler, considerg(y) = ey(x), f(x) = 32(x12 + 49x8 − 129x4 + 15) in Eq.(3.24) and
initial conditions asy(0) = y

′
(0) = y

′′
(0) = y

′′′
(0) = 0. Then the obtained general

solution for this problem from the expansion of its Taylor series for arbitraryk is

y(x) =− 20
k + 1

x4 +
2(43k + 143)

7(k + 1)(k + 5)
x8−

4(343k3 + 21751k2 + 138713k + 201305)
(k + 1)2(k + 5)(k + 9)

x12 + · · ·
(3.27)

Upon solving the polynomial in denominator of Eq.(3.27) it can be seen that the existence
of numerical solution is only possible ifk /∈ {−1,−5,−9}. Fig.10 contains the graphical
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FIGURE 9. Numerical solution obtained from SDM of example3.3.1
compared by its exact solution to verify the accuracy of SDM.

FIGURE 10. Graphical illustration of numerical solution of example
3.3.1for different values ofk. Slight deviation can be observed in this
plot due to only one term of shape factor in the Emden-Fowler Equation.

illustration of Eq.(3.27) for different positive values ofk. Since in Eq.(3.24) there is only
one term of shape factor involved, i.e.k, therefore the variational change in the solution is
not much higher and graph deviates from its actual place a slight bit. To verify the accuracy
of this solution putk = 2 in Eq.(3.27) to obtain

y(x) = −4x4 + 2x8 − 4
3
x12 + · · · (3.28)

Its exact solutiony(x) = −4 ln(1 + x4) has the same numerical series as in [22]. In Fig.9
the comparison of exact and numerical solution describes the accuracy of this method for
example 1 of case 3.

3.3.2. Example 2.Now for the second example, considerg(y) = y−7(x), f(x) = − 1
9x(x2−

12) in Eq.(3.24) and initial conditions asy(0) = 1,y
′
(0) = y

′′
(0) = y

′′′
(0) = 0. Then the
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FIGURE 11. Numerical solution of example3.3.2obtained from SDM
compared by its exact solution to verify the accuracy of SDM.

obtained Taylor series from Eq.(3.26) becomes

y(x) =1 +
1
6
x2 − 1

18(k + 1)
x4 +

1
72(k + 3)

x6 − (9k + 13)
2592(k + 1)(k + 5)

x8+

7(7k2 + 38k + 48)
58320(k + 1)(k + 3)(k + 7)

x10 + · · ·
(3.29)

which is the general solution of this problem for arbitraryk. To prove the preciseness of
this general solution putk = 3 in Eq.(3.29) to get

y(x) = 1 +
1
6
x2 − 1

72
x4 +

1
432

x6 − 5
10368

x8 +
7

62208
x10 − 7

248832
x12 + · · · (3.30)

This series is exactly the same as the series of its exact solution, i.e.y(x) =
√

1 + x2

3

(see [22]). In Fig.11 the comparison of exact and numerical solution of example 2 of case
3 describes the accuracy of this method. While solving the polynomial in denominator
of Eq.(3.29) it can be seen that the existence of numerical solution is only possible ifk /∈
1−2n, n ∈ Z+. Fig.12contains the graphical illustration of Eq.(3.29) for different positive
values ofk. Since in Eq.(3.24) there is only one term of shape factor involved, i.e.k,
therefore the variational change in the graph is not much visible and graph deviates from
its actual place a slight bit.
This detailed discussion about the shape factor in solved examples above describes the
importance of this parameter. Various numerical solutions with different values ofk have
been obtained. Usually in previous works this parameter have always kept constant, but by
varying this parameter, some interesting observations can be made. Physical situations can
be better understood with varying shape factor and use of equations in certain situations
can be made more effective accordingly.

4. CONCLUSION

In this work, fourth order Emden-Fowler singular equations have been solved by a
numerical method known as Successive Differentiation Method. This numerical method
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FIGURE 12. Graphical illustration of numerical solution of example
3.3.2for different values ofk. Slight deviation can be observed in this
plot due to only one term of shape factor in the Emden-Fowler equation.

utilizes basic concepts of differentiation and expansion of Taylor series. This method is
proved to be the easiest and the most accurate method among all other contemporary avail-
able methods. No hassle of finding Adomian or Lagrange multipliers and introducing any
perturbation parameters. Various examples have been solved numerically and graphical
illustrations of its solutions have been provided. Fig.1, Fig.3, Fig.5, Fig.7, Fig.9, Fig.11
represents the accuracy of numerical solutions obtained by SDM for various examples of
all three cases. whereas Fig.2, Fig.4, Fig.6, Fig.8, Fig.10, Fig.12 depicts the variation in
solution occurring due to the different values of shape factor. Observations made while
solving these equations is of shape factor that not only defines the types of equations and
reduces the terms in equation of the problem, but the presence of this shape factor in numer-
ical solution also defines the stability and existence of numerical solutions. As explained in
this work all these equations have solution for positive shape factors. As soon as the value
of k becomes negative the solution ceases to exist. Also, less involvement of shape factor in
equations and their numerical solutions gives least variation. Physical variation in graphs
is higher when greater number of terms are involved in differential equation otherwise not
much significant change is observed in the exact and numerical solution of Emden-Fowler
with different values ofk.
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