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1. INTRODUCTION, DEFINITIONS AND NOTATIONS

The means

Msin(x, y) =





x− y

2 sin x−y
x+y

x 6= y

x x = y

, (sine mean)

and

Mtanh(x, y) =





x− y

2 tanh x−y
x+y

x 6= y

x x = y

(hyperbolic tangent mean)
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defined for positivex, y, have been introduced in [6], where one of the authors investigates
means of the form

Mf (x, y) =





|x− y|
2f

(
|x−y|
x+y

) x 6= y

x x = y

. (1. 1)

It was shown that every meanM(x, y), x, y ∈ R+ that is symmetric (M(x, y) = M(y, x))
and homogeneous (M(λx, λy) = λM(x, y), λ > 0) can be represented in the form (1. 1 )
and that every functionf : (0, 1) → R (called Seiffert function) satisfying

z

1 + z
≤ f(z) ≤ z

1− z

produces a mean. Looking at the calculations below

M(x, y) =
x + y

2
M

(
x + y − |y − x|

x + y
,
x + y + |y − x|

x + y

)

=
|y − x|

2
z

M(1− z, 1 + z)

=
|y − x|
2f(z)

, where z =
|x− y|
x + y

, (1. 2)

we see that the Seiffert function corresponding toM is given by the formula

f(z) =
z

M(1− z, 1 + z)
.

For two meansM,N , the symbolM < N means that the inequalityM(x, y) < N(x, y)
holds for allx 6= y.

Our main tool will be the obvious fact that if for two Seiffert means the inequalityf < g
holds, then their corresponding means satisfyMf > Mg. Consequently, every inequality
between means can be replaced by the inequality between their Seiffert functions.

In 2011, Chu, Wang and Gong in [2] investigated the relations between the second
Seiffert meanT = Marctan, the arithmetic mean and the root mean square (denoted here
by A andRMS) and discovered that the double inequality

αRMS + (1− α)A < T < βRMS + (1− β)A

holds if and only ifα ≤ (4− π)/[(
√

2− 1)π] andβ ≥ 2/3, while the inequalities

RMSαA1−α < T < RMSβA1−β

hold if and only ifα ≤ 2/3 andβ ≥ 4− 2 log π/ log 2.
Similar results for the Neuman-Sándor meanNS = Marsinh were obtained by Neuman

in [5]:

αRMS + (1− α)A < NS < βRMS + (1− β)A

holds true if and only ifα ≤ [1− log(1 +
√

2)]/[(
√

2− 1) log(1 +
√

2)] andβ ≥ 1/3 and

RMSαA1−α < NS < RMSβA1−β

holds if and only ifα ≤ 1/3, β ≥ log((2 +
√

2)/3)/ log
√

2.
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The aim of this paper is to determine various optimal (i.e. the best possible in the class
of inequalities considered) bounds forMtan andMsinh by the arithmetic and root mean
square means.

Remark 1.1. Note that the root mean square mean

RMS(x, y) =

√
x2 + y2

2
has Seiffert function rms(z) =

z√
1 + z2

,

and the arithmetic mean

A(x, y) =
x + y

2
has Seiffert function a(z) = z.

For the reader’s convenience, in the following sections we place the main results with
their proofs, while all lemmas and technical details can be found in the last section of this
paper.

The motivation for our research are the inequalities

A < Msin < Mtanh < RMS,

proven in [6, Lemma 3.2] and Lemma 7.2.

2. L INEAR BOUNDS

Given three meansK < L < M , one may try to find the bestα, β satisfying the double
inequality(1− α)K + αM < L < (1− β)K + βM , or equivalently

α <
L−K

M −K
< β.

If k, l, m are the respective Seiffert functions, then the latter can be written as

α <
1
l − 1

k
1
m − 1

k

< β. (2. 3)

Thus the problem reduces to finding the upper and lower bound for certain function defined
on the interval(0, 1).

Theorem 2.1. The inequalities

(1− α)A + αRMS < Msin < (1− β) A + βRMS

hold if, and only if,α ≤ 1
3 andβ ≥ 1−sin 1

(
√

2−1) sin 1
≈ 0.4548.

Proof. By formula (2. 3 ) and Remark 1.1, we should investigate the function

h(z) =
1

sin z − 1
z√

1+z2

z − 1
z

=

z

sin z
− 1

√
1 + z2 − 1

, z ∈ (0, 1).

We shall show thath increases. By Lemma 7.5, it is enough to prove that the function
r(z) = (z/ sin z − 1)′ /(

√
1 + z2 − 1)′ increases.

We have

r(z) =
√

z2 + 1(sin z − z cos z)
z sin2 z
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and

r′(z) =
3z4 + 3z2 − (2z3 + z) sin 2z + (z4 + z2 + 1) cos 2z − 1

2z2
√

z2 + 1 sin3 z
.

The numerator functions(z) = 3z4 + 3z2 − (2z3 + z) sin 2z + (z4 + z2 + 1) cos 2z − 1
satisfiess(0) = 0 and

s′(z) = 6(2z3 + z)− (2z4 + 8z2 + 3) sin 2z

> 6(2z3 + z)− (2z4 + 8z2 + 3)
(

2z − (2z)3

3!
+

(2z)5

5!

)

=
8
15

z5(11 + z2(1− z2)) > 0 asz ∈ (0, 1).

The first inequality follows fromsin 2x < 2x − (2x)3

3! + (2x)5

5! . Hence,s is positive and
so isr′, which shows thath increases. To complete the proof we use the Maclaurin series
expansion and get

h(z) =
z − sin z

(
√

1 + z2 − 1) sin z
=

z3

3! + O(z5)

( z2

2 + O(z4))(z + O(z3))
=

z3

3! + O(z5)
z3

2 + O(z5)
−−−→
z→0

1
3
,

soh assumes values between1
3 andh(1). ¤

Theorem 2.2. The inequalities

(1− α) A + αRMS < Mtanh < (1− β)A + βRMS

hold if, and only if,α ≤ 2
3 andβ ≥ coth 1−1√

2−1
≈ 0.7557.

Proof. We use once more formula (2. 3 ) and investigate the function

h(z) =

1
tanh z

− 1
z

√
1+z2

z − 1
z

=
z

tanh z − 1√
1 + z2 − 1

, z ∈ (0, 1).

We shall show thath increases. By Lemma 7.5, it is enough to prove that the function
r(z) = (z/ tanh z − 1)′ /(

√
1 + z2 − 1)′ increases. A simple calculation reveals that

r(z) =
√

z2 + 1(sinh 2z − 2z)
2z sinh2 z

and

r′(z) =
(8z4 + 8z2 + 1) cosh z − (8z3 + 4z) sinh z − cosh 3z

4z2
√

z2 + 1 sinh3 z
.

Using the estimates from Lemma 7.1, we see that

(8z4 + 8z2 + 1) cosh z − (8z3 + 4z) sinh z − cosh 3z

> (8z4 + 8z2 + 1)
(

1 +
z2

2!
+

z4

4!

)

− (8z3 + 4z)
(

z +
z3

3!
+ 2

z5

5!

)
−

(
1 +

(3z)2

2!
+

(3z)4

4!
+ 2

(3z)6

6!

)

=
z6(24z2 + 109)

120
> 0,



Optimal bounds for the sine and hyperbolic tangent means 81

thusr′ is positive and bothr andh increase. Using Maclaurin’s series we get

h(z) =
z − tanh z

(
√

1 + z2 − 1) tanh z
=

z3

3 + O(z5)

( z2

2 + O(z4))(z + O(z3))
=

z3

3 + O(z5)
z3

2 + O(z5)
−−−→
z→0

2
3
,

soh assumes values between2/3 andh(1). ¤

3. HARMONIC BOUNDS

In this section, we look for the optimal bounds for meansK < L < M of the form

1− α

M
+

α

K
<

1
L

<
1− β

M
+

β

K
,

which can be written as

α <
1
L − 1

M
1
K − 1

M

< β,

or — in terms of their Seiffert functions,

α <
l −m

k −m
< β. (3. 4)

We shall use the above to prove two theorems.

Theorem 3.1. The inequalities

1− α

RMS
+

α

A
<

1
Msin

<
1− β

RMS
+

β

A

hold if, and only if,α ≤ 2 sin 1−√2
2−√2

≈ 0.4587 andβ ≥ 2
3 .

Proof. According to formula (3. 4 ), we investigate the function

h(z) =
sin z − z√

1+z2

z − z√
1+z2

=

√
1+z2 sin z

z − 1√
1 + z2 − 1

, z ∈ (0, 1).

To show thath decreases we use Lemma 7.5. A simple calculation shows that

r(z) =

(√
1+z2 sin z

z − 1
)′

(
√

1 + z2 − 1)′
=

(z3 + z) cos z − sin z

z3

and

r′(z) =
(3− z2 − z4) sin z − 3z cos z

z4
.

Using the known inequalities

sinx < x− x3/3! + x5/5! and cos x > 1− x2/2!

we get

r′(z) <
(3− z2 − z4)

(
z − z3

3! + z5

5!

)
− 3z

(
1− z2

2!

)

z4

=
1

120
z(−z4 + 19z2 − 97) < 0.
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Using Maclaurin’s series we get

h(z) =
√

1 + z2 sin z − z

z(
√

1 + z2 − 1)
=

(
1 + z2

2 + O(z4)
)(

z − z3

3! + O(z5)
)
− z

z
(
1 + z2

2 + O(z5)
)− z

=
z3

6 + O(z5)
z3

2 + O(z5)
−−−→
z→0

2
3
,

soh decreases from23 to h(1). ¤

Theorem 3.2. The inequalities

1− α

RMS
+

α

A
<

1
Mtanh

<
1− β

RMS
+

β

A

hold if, and only if,α ≤ 2 tanh 1−√2
2−√2

≈ 0.1860 andβ ≥ 1
3 .

Proof. Taking into account formula (3. 4 ), we should investigate the function

h(z) =
tanh z − z√

1+z2

z − z√
1+z2

=

√
1+z2 tanh z

z − 1√
1 + z2 − 1

, z ∈ (0, 1).

We shall show thath decreases. By Lemma 7.5, it is enough to prove that the function
r(z) =

(√
1 + z2 tanh z/z − 1

)′
/(
√

z2 + 1− 1)′ decreases. We have

r(z) =
z3 + z − sinh z cosh z

z3 cosh2 z

and

r′(z) =
−2z2(z2 + 1) sinh z + 3 cosh2 z sinh z − 3z cosh z

z4 cosh3 z
.

From the inequalitiescosh x > 1 + x2/2! andsinh x > x + x3/3! and Lemma 7.1, we
obtain

−2z2(z2 + 1) sinh z + 3 cosh2 z sinh z − 3z cosh z

<− 2z2(z2 + 1)
(

z +
z3

3!

)
+ 3

(
1 +

z2

2!
+ 2

z4

4!

)2 (
z +

z3

3!
+ 2

z5

5!

)

− 3z

(
1 +

z2

2!

)

=
z5(z8 + 22z6 + 240z4 + 504z2 − 1536)

2880
< 0.

Hencer′ is negative which shows thath decreases. We use the same technique as above to
show thatlimz→0 h(z) = 1/3. ¤
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4. QUADRATIC BOUNDS

Given three meansK < L < M , one may try to find the bestα, β satisfying the double
inequality

√
(1− α)K2 + αM2 < L <

√
(1− β)K2 + βM2, or equivalently

α <
L2 −K2

M2 −K2
< β.

If k, l, m are the respective Seiffert functions, then the latter can be written as

α <
1
l2 − 1

k2

1
m2 − 1

k2

< β. (4. 5)

Thus, the problem reduces to finding the upper and lower bound for a certain function
defined on the interval(0, 1).

Theorem 4.1. The inequalities
√

(1− α)A2 + αRMS2 < Msin <

√
(1− β)A2 + βRMS2

hold if, and only if,α ≤ 1
3 andβ ≥ 1

sin2 1
− 1 ≈ 0.4123.

Proof. By formula (4. 5 ), we should investigate the function

h(z) =

1
sin2 z

− 1
z2

(√
1 + z2

z

)2

− 1
z2

=
1

sin2 z
− 1

z2
, z ∈ (0, 1).

Its first derivative equalsh′(z) = 2
sin3 z

(
sin3 z

z3 − cos z
)

. Lemma 7.3 implies thath′(z) >

0. Hence the functionh increases. With help of Maclaurin we get

h(z) =
z2 −

(
z − z3

3! + O(z5)
)2

z2 (z + O(z3))2
=

z4

3 + O(z5)
z4 + O(z5)

−−−→
z→0

1
3
,

which completes the proof. ¤

And here comes the hyperbolic tangent version of the previous theorem.

Theorem 4.2. The inequalities
√

(1− α)A2 + αRMS2 < Mtanh <

√
(1− β)A2 + βRMS2

hold if, and only if,α ≤ 2
3 andβ ≥ 1

tanh2 1
− 1 ≈ 0.7241.

Proof. The function to be considered here is

h(z) =

1
tanh2 z

− 1
z2

(√
1 + z2

z

)2

− 1
z2

=
1

tanh2 z
− 1

z2
, z ∈ (0, 1).
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Sinceh′(z) = 2
sinh3 z

(
sinh3 z

z3 − cosh z
)

> 0 (by Lemma 7.4), we see that the functionh

increases. The reader will check, using Maclaurin’s series expansion thatlim
z→0

h(z) = 2/3,

so the range ofh is the interval( 2
3 , h(1)). ¤

5. BOUNDS BY WEIGHTED POWER MEAN OF ORDER−2

In this section, we look for the optimal bounds for meansK < L < M of the form√
1−α
M2 + α

K2 < 1
L <

√
1−β
M2 + β

K2 or, in terms of their Seiffert functions,

α <
l2 −m2

k2 −m2
< β. (5. 6)

Theorem 5.1. The inequalities
√

1− α

RMS2 +
α

A2
<

1
Msin

<

√
1− β

RMS2 +
β

A2

hold if, and only if,α ≤ − cos 2 ≈ 0.4161 andβ ≥ 2
3 .

Proof. According to formula (5. 6 ), we investigate the function

h(z) =
sin2 z − z2

1+z2

z2 − z2

1+z2

=
sin2 z − z2 cos2 z

z4
, z ∈ (0, 1).

We shall show thath decreases in the interval(0, 1). To this end we use known inequalities
x− x3

3! < sin x < x− x3

3! + x5

5! andcosx < 1− x2

2! + x4

4! . We have

h′(z) =
2
z5

(
z(z2 + 1) sin z cos z + z2 cos2 z − 2 sin2 z

)

<
2
z5

(
z(z2 + 1)

(
z − z3

3!
+

z5

5!

)(
1− z2

2!
+

z4

4!

)
+ z2

(
1− z2

2!
+

z4

4!

)2

−2
(

z − z3

3!

)2
)

=
z

1440
(
z6 − 26z4 + 232z2 − 736

)
< 0.

To complete the proof note thatlimz→0 h(z) = 2/3, - proof is left as an exercise to the
reader.

¤

Theorem 5.2. The inequalities
√

1− α

RMS2 +
α

A2
<

1
Mtanh

<

√
1− β

RMS2 +
β

A2

hold if, and only if,α ≤ sinh2 1−1
cosh2 1

≈ 0.1601 andβ ≥ 1
3 .

Proof. We follow the same line as in the previous proof. Let

h(z) =
tanh2 z − z2

1+z2

z2 − z2

1+z2

=
sinh2 z − z2

z4 cosh2 z
, z ∈ (0, 1).
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We shall show that the functionh decreases in(0, 1). We have

h′(z) =
2z(z2 + 1) sinh z + (2z2 + 1) cosh z − cosh 3z

z5 cosh3 z
:=

p(z)
z5 cosh3 z

and the functionp satisfiesp(0) = p′(0) = · · · = p(5)(0) = 0 and

p(6)(z) = 2z(z2 + 103) sinh z + (38z2 + 313) cosh z − 729 cosh 3z

< 208 sinh z + 351 cosh z − 729 cosh z < 0.

Thusp is negative and so ish′. Sincelimz→0 h(z) = 1/3 the assertion follows. ¤

6. BOUNDS WITH VARYING ARGUMENTS

If N is a mean, then the formulaN{t}(x, y) = N
(

x+y
2 + tx−y

2 , x+y
2 − tx−y

2

)
defines a

homotopy between the arithmetic meanA = N{0} andN = N{1}. Therefore ifA < M <
N , it make sense to ask what are the optimal numbersα, β satisfyingN{α} < M < N{β}.
Theorem 6.1 from [6] gives a method for finding such numbers in terms of the Seiffert
functions of the means involved.

Theorem 6.1(Witkowski [6]). For a Seiffert functionk denote bŷk(z) = k(z)/z. LetM
andN be two means with Seiffert functionsm andn, respectively. Suppose thatn̂(z) is

strictly monotone and letp0 = inf
z

bn−1(bm(z))
z andq0 = sup

z

bn−1(bm(z))
z .

If A(x, y) < M(x, y) < N(x, y) for all x 6= y then the inequalities

N{p}(x, y) 6 M(x, y) 6 N{q}(x, y)

hold if, and only if,p 6 p0 andq > q0.
If N(x, y) < M(x, y) < A(x, y) for all x 6= y then the inequalities

N{q}(x, y) 6 M(x, y) 6 N{p}(x, y)

hold if, and only if,p 6 p0 andq > q0.

In case ofN = RMS we see that̂rms(z) = 1√
1+z2 andr̂ms

−1(z) =
√

z−2 − 1.

Theorem 6.2. The inequalities

RMS
(

x+y
2 + αx−y

2 , x+y
2 − αx−y

2

)
< Msin < RMS

(
x+y

2 + β x−y
2 , x+y

2 − β x−y
2

)

hold if, and only if,α ≤
√

1
3 ≈ 0.5774 andβ ≥ cot 1 ≈ 0.6421.

Proof. Here, we investigate the function

h(z) =
r̂ms

−1 (
sin z

z

)

z
=

√
1

sin2 z
− 1

z2
.

The monotonicity of the functionh2 follows from the proof of Theorem 4.1, so evaluation
of the values ofh at the endpoints completes the proof. ¤
Theorem 6.3. The inequalities

RMS
(

x+y
2 + αx−y

2 , x+y
2 − αx−y

2

)
< Mtanh < RMS

(
x+y

2 + β x−y
2 , x+y

2 − β x−y
2

)

hold if, and only if,α ≤
√

2
3 ≈ 0.8165 andβ ≥ 2e

e2−1 ≈ 0.8509.
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Proof. According to Theorem 6.1 we investigate the function

h(z) =
r̂ms

−1 (
tanh z

z

)

z
=

√
1

tanh2 z
− 1

z2
.

Slight modification of the proof of Theorem 4.2 shows thath increases from
√

2/3 to√
1/ tanh2 1− 1, which completes the proof. ¤

7. TOOLS AND LEMMAS

In this section, we place all the technical details needed to prove our main results.

Lemma 7.1. For 0 < x < 1, the following inequalities hold

a) cosh x > 1 +
x2

2!
+

x4

4!
,

b) sinh x < x +
x3

3!
+ 2

x5

5!
,

c) cosh 3x < 1 +
(3x)2

2!
+

(3x)4

4!
+ 2

(3x)6

6!
,

d) cosh 2x < 1 +
(2x)2

2!
+

(2x)4

4!
+ 2

(2x)6

6!
.

Proof. a) Just truncate the Taylor series of the hyperbolic cosine.
b)

sinhx− x− x3

3!
− x5

5!
=

x7

7!
+

x9

9!
+ · · · < x5

5!

(
1

6 · 7 +
1

6 · 7 · 8 · 9 + . . .

)
<

x5

5!
.

c)

cosh 3x− 1− (3x)2

2!
− (3x)4

4!
− (3x)6

6!
=

(3x)8

8!
+

(3x)10

10!
+ . . .

<
(3x)6

6!

(
32

7 · 8 +
34

7 · 8 · 9 · 10
. . .

)
<

(3x)6

6!
.

d) follows from c).
¤

Lemma 7.2. For all 0 < x 6= y, the inequality

Mtanh(x, y) < RMS(x, y) (7. 7)

holds.

Proof. In terms of Seiffert functions the inequality (7. 7 ) reads

tanh z >
z√

1 + z2

which for positivez is equivalent tocosh2 z > 1+ z2. The latter holds, becausecosh2 z >
(1 + z2/2)2 > 1 + z2. ¤
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Lemma 7.3(Mitrinovi ć & Adamovíc [4]). Consider the functionsfu : [0, π/2) → R

fu(x) = cosu x sin x− x, −1 < u < 0.

For −1 ≤ u ≤ − 1
3 , the functionsfu are positive. For− 1

3 < u < 0, there exists0 < xu <
π
2 such thatfu is negative in(0, xu) and positive in(xu,∞).

Proof. We havefu(0) = f ′u(0) = 0 and

f ′′u (x) = u(u− 1) sin x cosu x

[
tan2 x− 1 + 3u

u(u− 1)

]
.

If −1 ≤ u < −1/3, we have 3u+1
u(u−1) ≤ 0, sofu is convex, thus positive.

For−1/3 < u < 0, the equationtan2 x − 1+3u
u(u−1) = 0 has exactly one solutionξu, so

fu is concave and negative on(0, ξu). Then it becomes convex and tends to infinity, thus
assumes zero at exactly one pointxu. ¤

Lemma 7.4(Lazarevíc [3]). Consider the functionsgu : [0,∞) → R

gu(x) = coshu x sinhx− x, −1 < u < 0.

For −1/3 ≤ u < 0, the functionsgu are positive. For−1 < u < −1/3, there exists
xu > 0 such thatgu is negative in(0, xu) and positive in(xu,∞).

Proof. We havegu(0) = g′u(0) = 0 and

g′′u(x) = u(u− 1) sinh x coshu x

[
tanh2 x +

1 + 3u

u(u− 1)

]
.

If −1/3 ≤ u < 0, we have 1+3u
u(u−1) ≥ 0, sogu is convex thus positive. For−1 < u < −1/3,

the equationtanh2 x + 1+3u
u(u−1) = 0 has exactly one solutionξu, so gu is concave and

negative on(0, ξu). Then it becomes convex and tends to infinity, thus assumes zero at
exactly one pointxu. ¤

Lemma 7.5 (Anderson et al. [1]). Supposef, g : (a, b) → R are differentiable func-
tions withg′(x) 6= 0 and such thatlimx→a f(x) = limx→a g(x) = 0 or limx→b f(x) =
limx→b g(x) = 0. Then

(1) if f ′

g′ is increasing on(a, b), then f
g is increasing on(a, b),

(2) if f ′

g′ is decreasing on(a, b), then f
g is decreasing on(a, b).

Proof. We shall consider the caselimx→b f(x) = limx→b g(x) = 0, g′ > 0 and f ′

g′ is
increasing. Other cases are analogous.
Consider the functionh = f ◦ g−1 : (g(a), 0) → R. Its derivative(f ◦ g−1)′(t) =
f ′

g′ (g
−1(t)) is increasing as a composition of two increasing functions, so the functionh

is convex. If we seth(0) = 0, thenh remains convex on(g(a), 0], which means that its

divided differenceh(t)−h(0)
t−0 = f(g−1(t))

t is increasing, thus so isf(g−1(g(x))
g(x) = f(x)

g(x) . ¤
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