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Optimal bounds for the sine and hyperbolic tangent means
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1. INTRODUCTION, DEFINITIONS AND NOTATIONS

The means

Msin(xa y) = q 2sin ;er y (Sine mean)

and

r—y
Stanh=z 7Y i
Miann (7, y) = anh 7= (hyperbolic tangent mean)

x =y
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defined for positiver, i, have been introduced in [6], where one of the authors investigates
means of the form

(1. 1)

It was shown that every meadd (z, y), x,y € R thatis symmetric/(z,y) = M (y, z))
and homogeneoud((\x, \y) = AM(x,y), A > 0) can be represented in the form (1. 1)
and that every functiorf : (0,1) — R (called Seiffert function) satisfying

z V4
< <
Ay

produces a mean. Looking at the calculations below

Mz.y) = Z580 rhy—ly—al z4y+ly—a|
2 T+y T+y
ly — | ly — x| |z —yl
- = , Where z=-"—>, 1.2
z 27(2) ery P

2 OO
M1 —2z1+42)
we see that the Seiffert function correspondind1ds given by the formula

f(z):M(l—z,Hz)'

For two meand/, N, the symbolM/ < N means that the inequality/ (z, y) < N(x,y)
holds for allz # y.

Our main tool will be the obvious fact that if for two Seiffert means the inequdlity ¢
holds, then their corresponding means satisfy > M,. Consequently, every inequality
between means can be replaced by the inequality between their Seiffert functions.

In 2011, Chu, Wang and Gong in [2] investigated the relations between the second
Seiffert meanT = M,.ctan, the arithmetic mean and the root mean square (denoted here
by A andRMS) and discovered that the double inequality

aRMS + (1 — a)A < T < BRMS + (1 — B)A
holds if and only ifer < (4 — 7)/[(v/2 — 1)7] and3 > 2/3, while the inequalities
RMS®*Al=® < T < RMSA!~F
hold if and only ifo < 2/3 andg > 4 — 2log 7/ log 2.
Similar results for the Neumana8dor meamNS = M, Were obtained by Neuman
in [5]:
aRMS + (1 — a)A < NS < BRMS + (1 — 3)A
holds true if and only iftv < [1 —log(1 + v2)]/[(v2 — 1) log(1 + v/2)] and3 > 1/3 and
RMS*A!=® < NS < RMSA!~#
holds if and only ifr < 1/3, 8 > log((2 + v/2)/3)/log V2.



Optimal bounds for the sine and hyperbolic tangent means 79

The aim of this paper is to determine various optimal (i.e. the best possible in the class
of inequalities considered) bounds Y., and My;,,;, by the arithmetic and root mean
square means.

Remark 1.1. Note that the root mean square mean

2 + 92 . . z
RMS(z,y) = — has Seiffert function rms(z) = Wi

and the arithmetic mean
Tty . .
Az,y) = S has Seiffert function a(z) = z.
For the reader’s convenience, in the following sections we place the main results with
their proofs, while all lemmas and technical details can be found in the last section of this

paper.
The motivation for our research are the inequalities

A < Mg, < Miann < RMS,
proven in [6, Lemma 3.2] and Lemma 7.2.

2. LINEAR BOUNDS

Given three mean& < L < M, one may try to find the best, 3 satisfying the double
inequality(1 — a)K + aM < L < (1 — B)K + M, or equivalently

L-K
a < V& < p.
If £,1, m are the respective Seiffert functions, then the latter can be written as
1_1
a< L <p (2. 3)
m k

Thus the problem reduces to finding the upper and lower bound for certain function defined
on the interval0, 1).

Theorem 2.1. The inequalities
(1 -a)A+ aRMS < Mg, < (1 —0)A+ SRMS

. . 1 1—sin1 ~
hold if, and only ifa < 5 and3 > WDl ™ 0.4548.

Proof. By formula (2. 3) and Remark 1.1, we should investigate the function
z

1 1 —
_ sin z z _ SiIlZ
h(z)—m_l— 1 z € (0,1).

z

We shall show thak increases. By Lemma 7.5, it is enough to prove that the function
7(2) = (z/sinz — 1)’ /(v/1+ 22 — 1)’ increases.

We have
22+ 1(sinz — z cos z)

2sin? 2

r(z) =
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and
'2) 324+ 322 — (223 + 2)sin22 + (22 + 22 + 1) cos 2z — 1
r'(z) = :
2221/22 4 1sin® 2
The numerator function(z) = 3z* + 322 — (223 + 2)sin2z + (2% + 22 + 1) cos 2z — 1
satisfiess(0) = 0 and

§'(2) = 6(22° + 2) — (22* 4+ 82% 4+ 3) sin 2z

> 6(22° + 2) — (22* + 822 +3) (22 _ (2P n (22)5>

3! 5!
8
= 1—525(11 +22(1-2%) >0 asze (0,1).
The first inequality follows fromsin 2z < 2x — (2?%,)3 + (25%,)5 Hence,s is positive and

so is7’, which shows that increases. To complete the proof we use the Maclaurin series
expansion and get

h(z): z—sinz _ 23;:4,_0(25) _ %?-‘1-0(25) 1
(VI+2—1)sinz (5 +0(zY))(z+0(z%)  Z+0(z5) =0 3’
soh assumes values betweerandh(1). O

Theorem 2.2. The inequalities
(1 —a)A+ aRMS < Mgann < (1 — 8) A+ BRMS
; ; 2 thl—1 .
hold if, and only if,x < £ and3 > COfT ~ 0.7557.

Proof. We use once more formula (2. 3 ) and investigate the function

1 1
_ tanhz % _ tarfhz_l
h(z)fm_lfm_l, z € (0,1).

We shall show that increases. By Lemma 7.5, it is enough to prove that the function
r(z) = (¢/tanhz — 1)’ /(v/1 + 22 — 1)’ increases. A simple calculation reveals that

r(z) = V22 + 1(sinh 2z — 22)

2z sinh? 2

and
(82% + 822 + 1) cosh z — (823 + 42) sinh 2z — cosh 3z

r'(z) =
(2) 422y/22 + 1sinh® 2

Using the estimates from Lemma 7.1, we see that
(82" + 822 + 1) cosh z — (82% + 42) sinh z — cosh 3z

2 4
> (824 +822+1) <1+Z+Z>

2 4l
3 5 2 4 6
— (82° + 42) <z+3! +25!) <1+ TR
6(2422 + 109
= —Z ( 2T ) > 0’

120
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thusr’ is positive and botl andh increase. Using Maclaurin’s series we get

z — tanh 2z ? + 0O(2%)

h(z) = (VI+22—1)tanhz (2 +0(24)(z + O(2?))

soh assumes values betwef8 andh(1).

3. HARMONIC BOUNDS

2
z—0 37

O

In this section, we look for the optimal bounds for med@hs< L < M of the form
l-a o 1 1-8 8

Vi + ? < z < 7 +
which can be written as ) )
a< 2L <p,
K M
or — in terms of their Seiffert functions,
l _
a < m < .

k—m
We shall use the above to prove two theorems.

Theorem 3.1. The inequalities

11—«
<

(6%
RMS A = M. = RMS
H H 25in17\/§ ~ 2
hold if, and only ifa < v 0.4587 and 8 > z.

Proof. According to formula (3. 4 ), we investigate the function

1 1-8

K,

+

h( ) sin 2z — \/11Z2 V 1+ZZ2 sinz _ 1
Z) = =
Z—iﬁ \/14’22717

g
A

3. 4)

To show thath decreases we use Lemma 7.5. A simple calculation shows that

V142z2sinz 1 ! 3 .
(2° + 2) cosz —sin z

z

r(z) = ( =
(VI+22 -1y

and

23

3— 22— 2% sinz —3zcosz

r'(z) = ( o

Using the known inequalities

sine < x—23/314+2°/5! and cosz > 1 —2%/2!

we get

(3—22—24)(2—2—?+§)—32(

r'(z) < por

_ 1 4 2
= 1202( 2% +192° —97)

< 0.
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Using Maclaurin’s series we get

sy - VT Psinz == _ (1+2+06) (- 5 +0(") - 2

z(V1422-1) 2(1+ %2 +0(z%) — 2
_ = +0(2°) 2
$+0(F) =0 3
soh decreases frorg to h(1). O

Theorem 3.2. The inequalities

l-a a1 _1-8_58
RMS " A~ Myun ~ RMS ' A

H H 2tanh1—v2 . 1
hold if, and only ifa < v I 0.1860 and 3 > 3.

Proof. Taking into account formula (3. 4 ), we should investigate the function

_ z V1422 tanh 2
h(Z) = tanh 2 ;/1+Z2 — - zt _ ]‘7 = (O, 1)
e V1i422-1

We shall show that decreases. By Lemma 7.5, it is enough to prove that the function

r(z) = (V14 22 tanhz/z — 1)/ /(V2? 4+ 1 —1)" decreases. We have

23 + z — sinh z cosh z

r(z) =

23 cosh? 2
and
—222(2% + 1) sinh z + 3 cosh® zsinh z — 3z cosh 2

1N
riz) = 24 cosh® 2

From the inequalitiegoshz > 1 + z2/2! andsinhxz > x + 23/3! and Lemma 7.1, we
obtain

—22%(2% 4 1) sinh z + 3 cosh? zsinh z — 3z cosh 2
3 2 4\ 2 3 5
9, 9 z z z z z

2’2

 29(2% 4 222° 4 2402* 4 50422 — 1536) <0
N 2880 ’

Hencer’ is negative which shows thatdecreases. We use the same technique as above to
show thaflim,_,o h(z) = 1/3. O
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4. QUADRATIC BOUNDS

Given three meank < L < M, one may try to find the best, 5 satisfying the double
inequality /(1 — a)K2 +aM? < L < /(1 — B)K2 + BM?2, or equivalently

L? - K?
R Ve AN
If £,1, m are the respective Seiffert functions, then the latter can be written as
1 _ 1
a< Lk <p (4. 5)
m2 k2

Thus, the problem reduces to finding the upper and lower bound for a certain function
defined on the interval, 1).

Theorem 4.1. The inequalities

\/(1 —a)A? + aRMS? < My, < \/(1 — B) A2 + BRMS?
hold if, and only ifo < £ and3 > L~ — 1 ~ 0.4123.

sin? 1

Proof. By formula (4. 5), we should investigate the function

1 1
hz) = ——sintz 22 12 L1 e
Vi) 1 swe #
oz )22
Its first derivative equals’(z) = - (S"Z’# —cosz ). Lemma 7.3 implies that'(z) >

0. Hence the functiot increases. With help of Maclaurin we get

5 2
hz) = 2-(-5+06) s io00
a 22 (24 0(23))° 244+ 0(25) =0

which completes the proof. O

)

W =

And here comes the hyperbolic tangent version of the previous theorem.

Theorem 4.2. The inequalities

/(1= ) A% + aRMS? < My, < 1/(1 - #) A” + BRMS?

. . 9 1 N
hold if, and only ifa < 5 and3 > ozt — 1~ 0.7241.

Proof. The function to be considered here is
1 1
) 1

h(z) = tanh” z 22’ _ —

(m) 1 tanh®z 2

z

z € (0,1).

22
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Sinceh/(z) = 2o S‘“Z% — cosh z) > 0 (by Lemma 7.4), we see that the functibn
increases. The reader will check, using Maclaurin’s series expansiohrt(t;a(z) =2/3,
so the range of is the interval( 2, h(1)). O

5. BOUNDS BY WEIGHTED POWER MEAN OF ORDER-2

In this section, we look for the optimal bounds for medfis< L < M of the form

ViS4 & < L <\ /22 + £ o, interms of their Seiffert functions,
2 2

a<7l_m < B. (5. 6)

k2 —m?2

Theorem 5.1. The inequalities
lrayo 1 J128, 05
RMS? A2~ Mg, RMS? A2
hold if, and only if o < — cos2 ~ 0.4161 and3 > 2.

Proof. According to formula (5. 6 ), we investigate the function
2 2

] _ _E 2 2 2
smm- z 3 — 3
B 1.2 sin®z—z%cos’z
h(Z) = 2 22 = o , ZE€ (0, 1).
z5 = 1422

We shall show thak decreases in the intervdl, 1). To this end we use known inequalities
x—%<Sinx<x—x3—?+%andcosx<1—§+%.Wehave

2
W(z)= = (2(2* + 1)sin z cos z + 22 cos?

2 9 22 20 22 2t 9 2 24\
<z5<Z(Z —|—1)<z—3!+5! 1—5—5—1 +z 1—5—}—]
2\’ z
Y T —
(Z 3!> 1440

To complete the proof note théin, .o h(z) = 2/3, - proof is left as an exercise to the
reader.

2 — 2sin? z)

(2% — 262" 4 23227 — 736) < 0.

O

Theorem 5.2. The inequalities
l-a a < J1=P P
RMS? A2 " Miann RMS?  A?

hold if, and only ifa < S22°1=1 ~ 01601 and 3 > 1.

cosh? 1

Proof. We follow the same line as in the previous proof. Let

tanh? z — 2, inh2 2 — 22
h(z) = L= SR ETE e (0,1).

2 2
22— T z4 cosh” z
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We shall show that the functiodndecreases if0, 1). We have

B () = 2z(2% + 1)sinh z 4 (22% + 1) cosh z — cosh 3z p(z)
25 cosh® z " 25cosh® 2
and the functior satisfieg)(0) = p/(0) = --- = p®(0) = 0 and

9 (2) = 22(2% 4 103) sinh z + (3822 4 313) cosh z — 729 cosh 3z
< 208 sinh z + 351 cosh z — 729 cosh z < 0.

Thusp is negative and so i§'. Sincelim,_,q h(z) = 1/3 the assertion follows. O

6. BOUNDS WITH VARYING ARGUMENTS

If N is amean, then the formulsi{*} (z,y) = N (£4¥ +¢25%, 22¥ —¢2-¥) defines a
homotopy between the arithmetic mean= N{° andN = N1}, Therefore ifA < M <
N, it make sense to ask what are the optimal numbegssatisfyingN {*} < M < N{8},
Theorem 6.1 from [6] gives a method for finding such numbers in terms of the Seiffert

functions of the means involved.

Theorem 6.1(Witkowski [6]). For a Seiffert functiork denote by?(z) =k(z)/z. LetM
and N be two means with Seiffert functionsand n, respectively. Suppose thatz) is

strictly monotone and leiy = inf % andgqy = sup W.

If A(z,y) < M(x,y) < N(z,y) for all x # y then the inequalities
NP}z, y) < M(x,y) < N9 (z,y)

hold if, and only ifp < pg andq > qp.
If N(z,y) < M(z,y) < A(z,y) for all x # y then the inequalities

N (2, y) < M(z,y) < NP} (z,y)
hold if, and only ifp < pg andq > qo.

In case ofN = RMS we see thafims(z) = ﬁ andrms '(2) = vz 2 — 1.

Theorem 6.2. The inequalities

RMS (552 + a 5%, £38 — a®5¥) < My, < RMS (552 + gE52, 238 — geoy)

hold if, and only if.a < \/g ~ 0.5774and 8 > cot 1 ~ 0.6421.

Proof. Here, we investigate the function

1
rms - (322) 1 1
z sin?z 22

h(z) =
The monotonicity of the functioh? follows from the proof of Theorem 4.1, so evaluation
of the values ot at the endpoints completes the proof. d
Theorem 6.3. The inequalities

RMS (£52 + 0252, 252 — a252) < Mo, < RMS (2 + 9232, 252 - 252)

hold if, and only if.a < @ ~0.8165 and 3 > —2- ~ 0.8500.

e2—1



86 M. Nowicka, A. Witkowski

Proof. According to Theorem 6.1 we investigate the function
———1 /tanh z
rms == 1 1
h(Z) — ( z ) — > - .
z tanh®z 2

Slight modification of the proof of Theorem 4.2 shows thaincreases from,/2/3 to
\/1/ tanh® 1 — 1, which completes the proof. O

7. TOOLS AND LEMMAS
In this section, we place all the technical details needed to prove our main results.

Lemma 7.1. For 0 < z < 1, the following inequalities hold

2 4
a) coshx>1+“%+z!5,
. €T €T
b) sinhz < z + 3 +2§’
2 N4 6
c) cosh3z < 1+ (3;) 4 (31') + 2(36x') ,
(20  (20)*  (20)°
d) cosh2x <1+ o + o 19 o)

Proof. a) Just truncate the Taylor series of the hyperbolic cosine.
b)

sinhx—x—x—g—ﬁ—i-&-lﬁ-&- <£5 iﬁ-#-i- <x—5
3150 19l 50\6-7 6-7-8-9 7 51"
c)
(3z)*  (3z)*  (32)° _ (3x)® | (32)"°
cosh3zx — 1 T 1 G " wl + 101 +...
- (32)° [ 3° N 34 _ (3z)°
6! 7-8  7-8-9-10" " 6! -
d) follows from c).
O
Lemma 7.2. For all 0 < = # y, the inequality
Mtanh (2, y) < RMS(z,y) (7.7
holds.
Proof. In terms of Seiffert functions the inequality (7. 7 ) reads
tanh z > i
V1422

which for positivez is equivalent ta:osh? z > 1+ z2. The latter holds, becausesh? z >
(1+22/2)2 > 1+ 22 O
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Lemma 7.3(Mitrinovi¢ & Adamovic [4]). Consider the functiong, : [0,7/2) — R
fulz) =cos" zsine —z, —1<u<D0.
For —1 <u < —3, the functionsf,, are positive. For—— < u < 0, there exist® < z,, <
5 such thatf,, is negatlve in(0, z,,) and positive |r’(xu, 00).
Proof. We havef, (0) = f/(0) = 0and
14 3u
u(u—1)
If -1 <u<-1/3, we have3“—“) <0, sof, is convex, thus positive.

For—1/3 < u < 0, the equationan? z — ul(jf’{) = 0 has exactly one solutiofy,, S0

fu 1s concave and negative @0, ¢,,). Then it becomes convex and tends to infinity, thus
assumes zero at exactly one paint d

f(x) = u(u — 1) sinx cos® x |tan® 2z —

Lemma 7.4(LazarevE [3]). Consider the functiong, : [0,00) — R
gu(z) = cosh” zsinhx —z, —1<u<0.

For —1/3 < w < 0, the functionsy,, are positive. For—1 < u < —1/3, there exists
x, > 0 such thatg,, is negative in0, z,,) and positive in(z,,, co).

Proof. We havey, (0) = ¢,,(0) = 0 and

1+ 3u

g (z) = u(u — 1) sinh  cosh® = |tanh® z 4 w1

If —1/3 < u < 0, we have;F24; > 0, sog, is convex thus positive. Forl < u < —1/3,

the equationtanh? = + ul(ij) = 0 has exactly one solutiog,, so g, is concave and

negative on(0,&,,). Then it becomes convex and tends to infinity, thus assumes zero at
exactly one point,,. O

Lemma 7.5 (Anderson et al. [1]) Supposef,g : (a,b) — R are differentiable func-
tions withg’(z) # 0 and such thatim,_., f(x) = lim;_q g(z) = 0 or lim,_;, f(z) =
lim,_,y g(x) = 0. Then

Q) if g—f is increasing or(a, b), then§ is increasing or(a, b),
(2) if ch—f is decreasing offa, b), theng is decreasing offa, b).

Proof. We shall consider the casen,_;, f(x) = lim,_,g(x) = 0, ¢ > 0 andg—f is
increasing. Other cases are analogous.

Consider the functioh = fog=! : (g9(a),0) — R. lts derivative(f o g=1)'(t) =
g—:(g_l(t)) is increasing as a composition of two increasing functions, so the funktion
is convex. If we seh(0) = 0, thenh remains convex olfig(a), 0], which means that its

divided difference=20) — o (1) (t)) is increasing, thus soré# f("’”) O



88 M. Nowicka, A. Witkowski

REFERENCES

[1] G.D.AndersonM.K. VamanamurthyM.K. Vourinen: Conformalinvariants,inequalities,and quasiconfor-
mal maps,CanadiarMathematicaSocietySeriesof MonographsandAdvancedTexts.JohnWiley & Sons,
Inc., New Yorks, 1997

[2] Y.-M. Chu, M.-K. Wang, andW.-M. Gong: Two sharp doubleinequalitiesfor Seiffertmean,J. Inequal.
Appl., pages 2011:44, 7, 2011.

[3] I. Lazarevic Certaininequalitieswith hyperbolicfunctions Univ. Beograd Publ.ElektrotehnFak.Ser.Mat.
Fiz. No. 159-170 (1966) 41-4@n Serbo-Croatian)

[4] D.S. Mitrinovic, D.D. Adamovic, Sur une inégalite €lementaire ol interviennent des fonctions
trigonométriquesUniv. Beograd. Publ. Elektrotehfrak. Ser.Mat. Fiz., No. 143-1551965) 23-34

[5] E.Neuman:A note on a certairbivariate mean,J. Math. Inequal.f, No. 4 (2012), 637-643.

[6] A. Witkowski, On Seiffert-likemeans,). Math. Inequal.,9, N0.4(2015),1071-1092¢0i:10.7153/jmi-09-83



