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1. INTRODUCTION

In recent centuries, the fractional calculus has been significantly discussed in engineering
and applied sciences. Progress in fractional calculus is reported in different applications
in differential equations, plasma physics, signal processing, fluid dynamics, viscoelastic
models, biological sciences, and electrochemistry [10, 15, 6, 23, 9, 8].
Undoubtedly, fractional calculus is an efficient mathematical tool to analyze the solution
of different problems in mathematics, engineering and sciences. To get more attention
in the field and to confirm its effectiveness, this paper is dedicated to recent applications
of fractional calculus in engineering sciences [5]. Recently, time-fractional derivatives has
been introduced in different nonlinear problems to study nonlinearity effects in the solution
[3, 4, 19]. The
There are different conditions when it is necessary to use dual nonlinear terms. In the study
of oceanic waves, where internal gravity waves are observed, the only one nonlinear term
can not completely model the phenomena of shallow water waves. In the Coastal Ocean
Probe Experiment (COPE), it was studied that the internal shallow waves were very strong.
COPE was experimented in Oregon Bay in 1995 [2]. Such engineering experiments of
shallow water wave phenomenon used for the construction of a differential equation with
dual-power law nonlinearity. The equation which illustrates this phenomenon is called
Gardner’s Equation.
The Gardner-Ostrovsky equation, which is the modified Korteweg de-Vries (KdV) equa-
tion with extended rotational effects to elucidate long internal waves of large amplitude
[11], wherec, α andα1 represents velocity of dispersionless linear waves, coefficient of
quadratic and cubic nonlinearities respectively. Moreover, the coefficients of small and
large-scale dispersion are symbolized byβ andγ. φ(x, t) describes a perturbation - from
its rest position in isopycnal surface, which is the surface of equal density. In this equation,
the dispersion due to nonhydrostaticity produced by the finiteness in depth of the basin and
Earth’s rotation comes together. The equation involving two nonlinear terms proportional
to α andα1. The first nonlinear term having quadratic nonlinearity which comes tradition-
ally, that is due to hydrodynamic nonlinear system [22], whereas the second term come out
either when the first nonlinear term tern to be arbitrarily small (this condition may happen
when the pycnocline is appeared close to the half depth of the basin [2,11]). The Gardner’s
Ostrovsky equation is considered to describe the strong nonlinearity effects produced by
large-amplitude waves [16].
Mostly, the analytical solutions to nonlinear fractional differential equations are not avail-
able, so the solutions can be obtained by semi-analytical methods to analyze the solutions
of the nonlinear dynamical problems [24]. Adomian Decomposition Method (ADM) [21],
Variational Iteration Method (VIM)[22], Homotopy Perturbation Method (HPM) [25]. Ho-
motopy Perturbation Method in association with the Laplace Transform Method [3], Ho-
motopy Analysis Method (HAM) [7] and Homotopy Analysis Laplace Transform Method
[9,18] and various other methods are used to obtain the solutions to the linear and nonlinear
problem.
In this paper, we have solved three examples, Ostrovsky equation, Gardner’s equation and
Gardner’s Ostrovsky equations with time-fractional derivative using Homotopy Perturba-
tion Laplace Transform Method. The method is the combination of classical perturbation
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method and Laplace transform method. Time fractional model have been considered to
understand the solution based on all of its historical states of the solution [14]. The key ad-
vantage of the method is (a) use of initial conditions (avoid the boundary conditions without
any discretization) (b) Linearization (c) restrictive assumptions to the nonlinear partial and
fractional differential equations [3]. Moreover, time-fractional derivative is used to visual-
ize the hidden nonlinear behaviour of the wave while changing the value of the fractional
order which can not be obtained by considering the integer order derivative. The method is
efficient and reliable for linear equations as well as nonlinear equations of fractional order
in Caputo’s sense.

2. METHOD DESCRIPTION

To illustrate the methodology of Homotopy Perturbation Laplace Transform Method (HPLTM),
we consider the generalized nonlinear differential equation with Caputo’s fractional deriv-
ative

Dnα
t φ(ξ, t) + Rφ(ξ, t) + Nφ(ξ, t) = q(ξ, t); t > 0; n− 1 < nα ≤ n. (2. 1)

having the initial condition
φ(ξ, 0) = h(ξ).

WhereR is the linear andN is the general nonlinear operator inξ andq(ξ, t) is continuous
function. The first step towards the solution is applying Laplace transform on Eq. ( 2. 1 ),
we obtain

L
{

Dnα
t φ(ξ, t)

}
+ L

{
Rφ(ξ, t) + Nφ(ξ, t)

}
= L

{
q(ξ, t)

}
.

Applying Laplace transform of fractional derivative [3], we get

L
{

φ(ξ, t)
}

= s−1h(ξ) + s−nαL
{

q(ξ, t)
}
− s−nαL

{
Rφ(ξ, t) + Nφ(ξ, t)

}
. (2. 2)

Taking the inverse Laplace transform on Eq. ( 2. 2 ), we find

φ(ξ, t) = I(ξ, t)− L−1
{

s−nαL
{

Rφ(ξ, t) + Nφ(ξ, t)
}}

, (2. 3)

whereI(ξ, t) is the term obtained from the source term and the given initial conditions.
Now implementing the perturbational technique, we can suppose that the solution can be
written as a power series inp as given below

φ(ξ, t) =
∞∑

n=0

pnφn(ξ, t) = p0φ0 + p1φ1 + . . . (2. 4)

where the parameterp ∈ [0, 1] is consider as a small. Nonlinear term can be written as

Nφ(ξ, t) =
∞∑

n=0

pnHn(φ) = p0H0(φ) + p1H1(φ) + . . . .

Here, Hn represents He’s polynomials ofφ0, φ1, φ2, ..., φn and can be obtained by the
formula

Hn =
1
n!

∂n
p

[
N

( ∞∑

i=0

piφi

)]

p=0

, n = 0, 1, 2, ... (2. 5)
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Substituting Eqs. ( 2. 4 ) and ( 2. 5 ) in Eq. ( 2. 3 ), we obtain
∞∑

n=0

pnφn(ξ, t) = I(ξ, t)− L−1
{

s−nαL
{

R

∞∑
n=0

pnφn(ξ, t) +
∞∑

n=0

pnHn(φ)
}}

.

This is combining of the Laplace transformation and Homotopy Perturbation Method by
using He’s polynomials. Now, equating the coefficient of like powers ofp on both sides,
the approximate solutions are computed as follows

p0 : φ0(ξ, t) = I(ξ, t),

p1 : φ1(ξ, t) = L−1
{

s−nαL
{

Rφ0(ξ, t) + H0(φ)
}}

,

p2 : φ2(ξ, t) = L−1
{

s−nαL
{

Rφ1(ξ, t) + H1(φ)
}}

,

p3 : φ3(ξ, t) = L−1
{

s−nαL
{

Rφ2(ξ, t) + H2(φ)
}}

.

In the similar manner, the other componentsφn(ξ, t) for all n > 3 can be obtained. Lastly,
we get the approximate analytical solutionφ(ξ, t) by the truncation

φ(ξ, t) = lim
N→∞

N∑
n=1

φn(ξ, t)

3. TIME-FRACTIONAL OSTROVSKY EQUATION

In this section, we consider time-fractional Ostrovsky equation to study the solitary wave
solutions with rotational effects.

(φα
t + α1φφξ + βφξξξ)ξ = cφ, (3. 6)

subject to the initial condition
φ(ξ, 0) = A sech2 ξ.

It can be written as

φα
t + α1φφξ + βφξξξ = c

∫
φd. (3. 7)

Laplace transform of Eq. ( 3. 7 ) can give the expression of the form

L
{

φα
t + α1φφξ + βφξξξ

}
= cL

{ ∫
φdξ

}
.

Rearranging

L
{

φα
t

}
= −α1L

{
φφξ

}
− βL

{
φξξξ

}
+ cL

{ ∫
φdξ

}
.

Applying the rule of Laplace transform of fractional derivative, we get

sαφ(ξ, s)− sα−1φ(ξ, 0) = −α1L
{

φφξ

}
− βL

{
φξξξ

}
+ cL

{ ∫
φdξ

}
.

On simplifying,

φ(ξ, s) = s−1φ(ξ, 0) + s−α
{
− α1L

{
φφξ

}
− βL

{
φξξξ

}
+ cL

{ ∫
φdξ

}}
. (3. 8)
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By applying Inverse Laplace transform on Eq. ( 3. 8 ), that is

φ(ξ, t) = L−1
{

s−1φ(ξ, 0)
}

+L−1
{

s−α
{
−α1L

{
φφξ

}
−βL

{
φξξξ

}
+cL

{ ∫
φdξ

}}}
.

(3. 9)
On putting the given initial condition in equation (3.4), we have

φ(ξ, t) = A sech2 ξ + L−1
{

s−α
{

Rφ(ξ, t) + Nφ(ξ, t)
}}

. (3. 10)

We assume that our solution can be written as power series

φ(ξ, t) =
∞∑

n=0

pnφn(ξ, t) = p0φ0 + p1φ1 + p2φ2 + ...

Moreover, nonlinear term can be obtained as

Nφ(ξ, t) =
∞∑

n=0

pnHn(φ) = p0H0 + p1H1 + p2H2 + ...

Now, using the expression of the He’s Polynomial in nonlinearity term and the linear oper-
ator in Eq.(3.5), we find the series of approximate solutions

φ0(ξ, t) = A sech2 ξ,

φ1(ξ, t) =
tα

Γ(1 + α)

{
A tanh ξ + 2α1A

2 sech4 ξ tanh ξ − 16βA sech4 ξ tanh ξ − 8βA sech2 ξ tan3 ξ
}

,

φ2(ξ, t) =
At2α sech2 ξ

8Γ(1 + 2α)

{
16(α1A(A+14β)−8β(A+17β)) sech6 ξ−96(α1A(A+22β)

− 10β(A + 24β)) sech4 ξ tanh2 ξ + sech2 ξc2 cosh4 ξ log(cosh ξ)

+ c(8A− 4α1A + 48β + 3c log(cosh ξ)) + 256(−A + 4α1A− 57β)β tanh4 ξ

+ 4c(−4β + c log(cosh ξ))− 4c(A + 3β) + c log(cosh ξ) tanh2 ξ + 128β2 tanh6 ξ
}

.

Adding the above approximations, that is

φ(ξ, t) = lim
N→∞

N∑
n=0

φn(ξ, t) = A sech2 ξ+
Atα1 tanh ξ

Γ(1 + α)

{
c+2(α1A−8β) sech4 ξ+8β sech2 ξ tanh2 ξ

}

+
At2α1 sech2 ξ

8Γ(1 + 2α)

{
(16(α1A(A + 14β)− 8β(A + 17β)) sech6 ξ − 96(α1A(A + 22β)

− 10β(A + 24β)) sech4 ξ tanh2 ξ + sech2 ξ(c2 cosh 4ξ log(cosh ξ))

+ c(8A− 4α1A + 48β + 3c log(cosh ξ)) + 256(−A + 4αA− 57β)β tanh4 ξ

+4(c(−4β+c log[cosh ξ]))+c(−4(A+3β))+c log[cosh ξ] tanh2 ξ+128β2 tanh6 ξ
}

.

Figure:1 depicts the numerical solutions of the waves obtained by solving time-fractional
Ostrovsky equation for different values of fractional order derivative. The simulation ob-
tained from the values ofα presents the nonlinear behaviour of the wave at timet = 0.1, 0.5
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and1 to study the wave profile under the domain 0 to 1. One can easily visualize of the
hidden nonlinear effects of the solution in Figure:1 and can be utilize for implementation.

4. TIME-FRACTIONAL GARDNER’ S EQUATION

Consider the time-fractional Gardner’s equation

φα
t + α1φφξ + βφ2φξ + γφξξξ = 0, (4. 11)

having the initial condition
φ(ξ, 0) = A sech2 ξ.

Here, taking Laplace Transform on Eq. ( 4. 11 ), we get

L
{

φα
t + α1φφξ + βφ2φξ + γφξξξ

}
= L

{
0
}

,

Rearranging the above equation, we have

L
{

φα
t

}
= −α1L

{
φφξ

}
− βL

{
φ2φξ

}
− γL

{
φξξξ

}
.

Now, implementing the Laplace transform of fractional derivative, we obtain

sαφ(ξ, s)− sα−1φ(ξ, 0) = −α1L
{

φφξ

}
− βL

{
φ2φξ

}
− γL

{
φξξξ

}
.

On simplifying,

φ(ξ, s) = s−1φ(ξ, 0) + s−α
{
−α1L

{
φφξ

}
− βL

{
φ2φξ

}
− γL

{
φξξξ

}}
. (4. 12)

Now, we take Laplace inverse transform on Eq. ( 4. 12 ), we obtain the expression

φ(ξ, t) = L−1
{

s−1φ(ξ, 0)
}

+ L−1
{

s−α
{
−α1L

{
φφξ

}
− βL

{
φ2φξ

}
− γL

{
φξξξ

}}}
.

(4. 13)
By putting the initial condition in Eq. ( 4. 12 ), we have

φ(ξ, t) = A sech2 ξ + L−1
{

s−α
{

Rφ(ξ, t) + Nφ(ξ, t)
}}

. (4. 14)

We assume that our solution can be written as power series

φ(ξ, t) =
∞∑

n=0

pnφn(ξ, t) = p0φ0 + p1φ1 + p2φ2 + ...

and the nonlinear term can be represented as

Nφ(ξ, t) =
∞∑

n=0

pnHn(φ) = p0H0 + p1H1 + p2H2 + ...

Now, using the He’s Polynomial in nonlinearity term and the linear operator in Eq.( 4. 14
), we can obtain the solution

φ0(ξ, t) = A sech2 ξ,

φ1(ξ, t) =
tα

Γ(1 + α)

{
−2α1A

2sech4ξ tanh ξ−2A3α2 sech6 ξ tanh ξ+β(16A sech4 ξ tanh ξ

− 8A sech2 ξ tanh3 ξ)
}
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FIGURE 1. Numerical Results of Example:1 for α =
1, 0.98, 0.95, 0.9, 0.8 and0.7
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φ2(ξ, t) =
At2α

8Γ(1 + 2α)

{
− 12α2

1A
2 + 354α1Aβ − 2604β2 − 48α1A

3α2

+ 1152A2βα2 − 96A4α2
2 + cosh 2ξ(−11α2

1A
2 + 272α1βA− 1806β2 − 16α1α2A

2

+ 80A4α2
2) + 3α2

1A
2 cosh 6ξ − 96α1βA cosh 6ξ + 717β2 cosh 6ξ + 120A2βα2 cosh 6ξ

+ 10Aα1β cosh 8ξ − 116β2 cosh 8ξ + β2 cosh 10ξ
}

sech12 ξ

Adding the above approximations, that is

φ(ξ, t) = lim
N→∞

N∑
n=0

φn(ξ, t) = A sech2 ξ+
{
−2α1A

2 sech4 ξ tanh ξ−2A3α2 sech6 ξ tanh ξ

+β(16A sech4 ξ tanh ξ−8A sech2 ξ tanh3 ξ)
}

+
At2α

8Γ(1 + 2α)

{
−12α2

1A
2+354α1Aβ−2604β2

−48α1A
3α2+1152A2βα2−96A4α2

2+cosh 2ξ(−11α2
1A

2+272α1βA−1806β2−16α1α2A
2

+ 80A4α2
2) + 3α2

1A
2 cosh 6ξ − 96α1βA cosh 6ξ + 717β2 cosh 6ξ + 120A2βα2 cosh 6ξ

+ 10α1βA cosh 8ξ − 116β2 cosh 8ξ + β2 cosh 10ξ
}

sech12 ξ.

Figure:2 present the numerical solutions obtained by solving time-fractional Gardner’s
equation for different values ofα. The simulation obtained from the values ofα to study
the wave profile in0 < t ≤ 1 and depicts that the nonlinear behaviour of the wave is more
visible when putting the fractional values of the order of the derivative at timet = 0.1, 0.5
and1.

5. TIME-FRACTIONAL GARDNER’ S OSTROVSKY EQUATION

In this section, we are solving the Gardner’s Ostrovsky equation involving time-fractional
derivative, i.e

(φα
t + cφξ + α1φφξ + α2φ

2φξ + βφξξξ)ξ = γφ, (5. 15)

subject to the initial condition
φ(ξ, 0) = A sech2 ξ.

It can be written as

φα
t + cφξ + α1φφξ + α2φ

2φξ + βφξξξ = γ

∫
φdξ. (5. 16)

The Laplace transform of Eq. ( 5. 15 ) can give the expression, i.e

L
{

φα
t + cφξ + α1φφξ + α2φ

2φξ + βφξξξ

}
= γL

{∫
φdξ

}
.

Rearranging,

L
{

φα
t

}
= −cL

{
φξ

}
− α1L

{
φφξ

}
− α2L

{
φ2φξ

}
− βL

{
φξξξ

}
+ γL

{∫
φdξ

}
.

Applying the rule of Laplace transform of fractional derivative, we get

sαφ(ξ, s)−sα−1φ(ξ, 0) = −cL
{

φξ

}
−α1L

{
φφξ

}
−α2L

{
φ2φξ

}
−βL

{
φξξξ

}
+γL

{∫
φdξ

}
.
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FIGURE 2. Numerical Results of Example:2 for α =
1, 0.98, 0.95, 0.9, 0.8 and0.7
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On simplifying,

φ(ξ, s) = sα−1φ(ξ, 0) + s−α
{
− cL

{
φξ

}
− α1L

{
φφξ

}
− α2L

{
φ2φξ

}
− βL

{
φξξξ

}

+ γL
{ ∫

φdξ
}}

. (5. 17)

On applying Inverse Laplace transform on Eq. ( 5. 17 ), we obtain

L−1
{

φ(ξ, s)
}

= L−1
{

s−1φ(ξ, 0)
}

+ L−1
{

s−α
{
− cL

{
φξ

}
− α1L

{
φφξ

}

− α2L
{

φ2φξ

}
− βL

{
φξξξ

}
+ γL

{∫
φdξ

}}}
(5. 18)

Here we put the initial condition in Eq. ( 5. 18 ), we find

φ(ξ, t) = A sech2 ξ + L−1
{

s−α
{

Rφ(ξ, t) + Nφ(ξ, t)
}}

. (5. 19)

We assume that our solution can be written as power series

φ(ξ, t) =
∞∑

n=0

pnφn(ξ, t) = p0φ0 + p1φ1 + p2φ2 + ...

The nonlinear term can be expressed as

Nφ(ξ, t) =
∞∑

n=0

pnHn(φ) = p0H0 + p1H1 + p2H2 + ...

Using the expression of He’s Polynomial in nonlinearity term and the linear operator in
Eq.( 5. 19 ), we get the solution

φ0(ξ, t) = A sech2 ξ,

φ1(ξ, t) =
Atα

Γ(1 + α)

{
γ tanh ξ + 2(8β −Aα1) sech4 ξ tanh ξ + 2A2α2 sech6 ξ tanh ξ

− sech2 ξ(c− 8β tanh3 ξ)
}

,

φ2(ξ, t) =
At2α

6Γ(1 + 2α)

{
−12A4α2

2 sech12 ξ+24A2α2 sech10 ξ(14β−Aα1+5A2α2 tanh2 ξ)

− 12 sech8 ξ(136β2 − 22Aβα1 − 8A2(−43β + 2Aα1)α2 tanh2 ξ) + 6γ(γ log(cosh ξ)

−2α1 tanh ξ+2β tanh4 ξ)−3 sech4 ξ(−12γβ+3Aα1γ−64α1β tanh ξ+12α1Aα1 tanh ξ

−8A2α2γ tanh2 ξ+64β(57β−5Aα1) tanh4 ξ)−6 sech2 ξ(c2+(−4βγ+2Aα1γ) tanh2 ξ

− 16α1β tanh3 ξ + 64β2 tanh6 ξ)
}

.
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Adding the above approximations, that is

φ(ξ, t) = lim
N→∞

N∑
n=0

φn(ξ, t) = A sech2 ξ+
Atα

Γ(1 + α)

{
γ tanh ξ+2(8β−Aα1) sech4 ξ tanh ξ

+ 2A2α2 sech6 ξ tanh ξ − sech2 ξ(c− 8β tanh3 ξ)
}

+
At2α

6Γ(1 + 2α)

{
− 12A4α2

2 sech12 ξ

+ 24A2α2 sech10 ξ(14β −Aα1 + 5A2α2 tanh2 ξ)− 12 sech8 ξ(136β2 − 22Aβα1

− 8A2(−43β + 2Aα1)α2 tanh2 ξ) + 6γ(γ log(cosh ξ)− 2α1 tanh ξ + 2β tanh4 ξ)

− 3 sech4 ξ(−12γβ + 3Aα1γ − 64α1β tanh ξ + 12α1Aα1 tanh ξ − 8A2α2γ tanh2 ξ

+64β(57β−5Aα1) tanh4 ξ)−6 sech2 ξ(c2+(−4βγ+2Aα1γ) tanh2 ξ−16α1β tanh3 ξ+64β2 tanh6 ξ)
}

.

Figure:3 represents the numerical solutions of the waves obtained by solving time-
fractional Gardner’s Ostrovsky equation for different values of fractional order derivative.
The simulation obtained from the values ofα presents the nonlinear behaviour of the wave
at timet = 0.1, 0.5 and1 to study the wave profile under the domain 0 to 1. One can easily
visualize of the hidden nonlinear behaviour of the solution in Figure:1 and can be utilize
for implementation.

6. CONCLUSION

A recent semi-analytical method HPLTM is implemented to solve Ostrovsky equation,
Gardner’s equation and Gardner’s Ostrovsky equation involving time-fractional deriva-
tive just using the initial condition and some restrictive assumptions. The Caputo time-
fractional derivative is a reliable tool to study the solution of upcoming state on the basis of
all previous backgrounds of the solution. These semi-analytical results are useful for simu-
lations of solitary wave solutions having rotational effects. This extended study of solitary
theory is beneficial to understand the dynamics of solitary waves at the laboratory level.
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