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Abstract. In this article, we compute tables of values for the Riemann-Liouville
fractional derivative of the generalized polylogarithm functions considering para-
meter valuesµ = 3; 4; 5 ands = 1

2
; 3

2
; −1

2
; −3

2
. Several authors investigated such

functions and their analytic properties, but no work can be found in the literature for
the computation of their values. We perform numerical computations to evaluate
Riemann-Liouville fractional derivative of the generalized polylogarithm functions
for different values of the involved parameters. We validate the data obtained by
using our new mathematical model (given in the form of a difference equation)
and the known classical integral representations forµ = 3; 4; 5 ands = 1

2
; 3

2
. It

is worth mentioning that for the positive values of parameters = 1
2
; 3

2
, our cal-

culations are consistent with the directly computed results by using their integral
representation and 100% accuracy is achieved. Furthermore, it is obvious that the
involved integrals

R∞
0

ts−1e−3t

(1−ze−t)3
;
R∞
0

ts−1e−4t

(1−ze−t)4
;
R∞
0

ts−1e−5t

(1−ze−t)5
; are not conver-

gent for the negative values of parameters and in this investigation we evaluate
these integrals for the negative values ofs.
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1. INTRODUCTION

1.1. Motivation

The study of Polymers plays a fundamental role in modern Sciences like Polymer Nanotechnology;
Polymer Physics; Polymer Chemistry and Biology. More specifically, the natural length scales of
polymer chains that lie in the nanometer domain, make polymers perfect building blocks for nan-
otechnology. A number of recent developments in the use of polymers for the fabrication of nanos-
tructures by self-assembling strategies are discussed in [15]

Therefore, Polylogarithm functions were first known to C. Truesdell when Mr. H. Jacobson informed
him that these function play an important role in his researches on the theory of structure of polymers
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[11]. Then Truesdell [33] studied its different properties and representations to compute its values
for s = −1/2; 1/2; 3/2. Recently, it is a well-known mathematical function that can be obtained
as a special case of Hurwitz-Lerch zeta functions. It is related with the important functions of Ana-
lytic Number Theory and Quantum Physics. By taking motivation from all these facts we compute
the values of Riemann-Liouville fractional derivative of the generalized polylogarithm functions by
using computational software Mathematica. We consider the same values of the parameterz as were
considered by Truesdell. To achieve the purpose, we use the following recently obtained difference
equations involving the generalized Hurwitz-Lerch zeta functions[30].

2!z2Φ∗3(z, s, a + 2) = Φ(z, s− 2, a)− (2a + 1)Φ(z, s− 1, a) + a(a + 1)Φ(z, s, a) (1. 1)

3!z3Φ∗4(z, s, a + 3) = Φ(z, s− 3, a)− 3(a + 1)Φ(z, s− 2, a)

+ (3a2 + 6a + 2)Φ(z, s− 1, a)

+ a(a + 1)(a + 2)Φ(z, s, a)

(1. 2)

4!z4Φ∗5(z, s, a + 4) = Φ(z, s− 4, a)− 2(2a + 3)Φ(z, s− 3, a)

+ (6a2 + 18a + 11)Φ(z, s− 2, a)

− (4a3 + 18a2 + 22a + 6)(a + 2)Φ(z, s− 1, a)

+ a(a + 1)(a + 2)(a + 3)Φ(x, s, a)

(1. 3)

therefore, before going on our research results, we review the literature to present some preliminaries
and basic definitions that are necessary to understand the details of this research.

1.2. Preliminaries and basic definitions

The polylogarithm function [33] is defined by

Lis(z) =

∞X
n=1

zn

ns
;∈ ε (|z| < 1;<(s) > 1, |z| = 1) (1. 4)

It generalizes the Riemann zeta function [6, p.32] as we have

Lis(1) = Φ(1, s) = ζ(s) (<(s) > 1) (1. 5)

and can also be represented as an integral

Lis(z) =
z

Γ(s)

Z ∞

0

t5−1

et − z
dt

(s ∈ C when|z| < 1 and when|z| = 1)

(1. 6)
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Here, it is important to mention that the polylogarithm function is also related with the important func-
tions of Quantum Statistics namely, Bose-EinsteinBs−1(x) and the Fermi-Dirac functionsFs−1(x).
This relation is given by [22, Equation (1.14-1.15)].

Lis(e
x) = Bs−1;−Lis(−ex) = Fs−1(x) (1. 7)

One important representation of this function namely Lindelfs representation is given by [33, p.
149(13)],

Lis(z, s) = Γ(1− s)(log z)s−1 +

∞X
n=0

ζ(s− n)
log z)n

n!
,

(| log z| < 2π, s 6= 1, 2, 3, ...).

(1. 8)

Hurwitz-Lerch zeta function [6, p. 27] as a generalization of the polylogarithm is given by

Φ(z, s, a) =

∞X
n=0

zn

(n + a)s

(a ∈ C \ Z0; s ∈ c when|z| < 1;<(s) > 1 when|z| = 1)

(1. 9)

It has a meromorPhic extension to the whole complex s-plane while it has a simple singularity at s =
1 of residue 1. It is also represented by [6, p. 27(1.6)(3)]

Φ(z, s, a) =
1

Γ(s)

Z ∞

0

ts−1e−at

1− ze−t
dt

(|z| < 1 → <(s) > 0;<(a) > 0; z = 1 =⇒ <(s) > 1)

(1. 10)

Apart from other applications, the Hurwitz Lerch zeta function or the generalized polylogarithm
function is the most general function in the original zeta family. For example, for different values of
involved parameters in equations (9)-(10) yield the following relationships with the polylogarithm,
Hurwitz and Riemann functions respectively:

8
>>>>>>>>>><
>>>>>>>>>>:

Lis(z) =

∞X
n=1

zn

ns
= zΦ(s, z, 1),

ζ(s, a) =

∞X
n=0

1

(n + a)s
= Φ(s, 1, a),

ζ(s) =

∞X
n=1

1

(n + a)s
= Φ(s, 1, 1) = ζ(s, 1)

9
>>>>>>>>>>=
>>>>>>>>>>;

(1. 11)

Similar to as for the polylogarithm function, the Hurwitz-Lerch zeta function also has a series repre-
sentation [6, pp.28–29]

Φ(s, z, α) =
Γ(1− s)

zα
(log

1

2
)α + z−α

∞X
n=0

ζ(s− n, α)
(log z)n

n!
,

(| log z| < 2π, s 6= 1, 2, 3, ...., α 6= 0,−1,−2, ..., ),

(1. 12)
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which generalizes Lindelfs representation (1. 8 ). As shown already by Lin and Srivastava, [25] the
following generalized definition is simply the Riemann-Liouville fractional derivative of the Hurwitz-
Lerch zeta function itself. This is of special interest for this investigation and is given by

Φ∗µ(z, s, a) =
1

Γ(s)

Z ∞

0

ts−1eat

(1− ze−t)µ
dt

(<(a) > 0,<(s) > 0 when|z| ≤ 1(z 6= 1);<(s− µ) > 0 whenz = 1)

(1. 13)

and its series representation is given by

Φ∗µ(z, s, a) =

∞X
n=0

(µ)n

(a + n)s

zn

n!
(1. 14)

Forµ = 1, equations (1. 13 ) and (1. 14 ) reduce to the original Hurwitz-Lerch zeta function (1. 9 )-
(1. 10 ).

More recently Srivastava et. al [28] have used Riemann-Liouville fractional derivative to establish
some new fractional-calculus connections between MittagLeffler functions. Fractional calculus has
become vital to model the real-world problems. The use of fractional derivatives and integrals have
reshaped the scientific research [35, 16, 7]. Several different definitions of the fractional derivatives
have been used and developed to study different mathematical problems and applications [18, 1, 10].
Ji-Huan He [10] beautifully describes fractal calculus and its geometrical explanation by introducing
new space variables. Of our interest here is the one of the basic definitions namely the Riemann-
Liouville fractional derivative operatorDµ

z defined by (see, for example, [12, p. 181], [8, p. 70] and
[25])

Dµ
z {f(z)} =

(
1

Γ(−µ)

R z

0
(z − t)µ−1f(t) dt <(µ) > 0

dm

dzm {Dµ−m
z f(z)} (m− 1 ≤ <(µ) < m(m ∈ N))

(1. 15)

Therefore, it is significant to study the generalized polylogarithm function in the light of the following
interesting (and useful) relation

Φ∗µ(z, s, a) =
1

Γ(s)

Z ∞

0

ts−1e−at

(1− ze−t)µ
dt =

1

Γ(µ)
Dµ−1

z {zµ−1Φ(z, s, a)};<(µ) > 0 (1. 16)

which (as previously observed by Lin and Srivastava [25, p.730]) reveals that the functionΦ∗µ(z, s, a)
is basically a Riemann-Liouville fractional derivative of the generalized polylogarithm function
Φ(z, s, a) (some other closely-related researches by Garg et al. [2] and Lin et al. [5] can be studied
for further details).

Bayad and Chikhi [9], Srivastava and Choi [24], Choi and Srivastava [21], Srivastava [4] Nakamura
[?] and Kanemitsu et al. [14] studied different properties and applications of the generalized poly-
logarithm functions (Hurwitz-Lerch zeta function). Srivastava [26], has established some formulas
for the Bernoulli and Euler polynomials at rational arguments in view of their relationship with the
generalized polylogarithm functions. Srivastava et. al [23] have also studied integral and computa-
tional representations of the extended Hurwitz-Lerch Zeta function. Several different generalizations
of the generalized Hurwitz-Lerch zeta function (14) can be found in the literature, for example, Sri-
vastava discusses almost all these generalizations and works in his article [19]. Choi and Parmer [3]
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further generalized these functions by introducing one more parameter. For more such discussions
the interested reader is referred to author work [30] and [?].

1.3. Significance and Objectives

From the above discussion, we can notice that several authors presented and studied worthwhile
generalizations of the HurwitzLerch zeta functions. Various analytic formulae, integral, and series
representations of these functions are known in the literature. However, as we deeply study the basic
zeta and polylogarithm functions, we know their values, their graphs, and several other basic aspects.
To the best of our knowledge no such work has been reported for the computation of the values of the
Riemann-Liouville fractional derivative of the generalized polylogarithm functions. Computation of
values performed in this investigation are worthwhile to evaluate these functions accurately that are
consistent with the results obtained by known integral representation. The objective of our present
investigation is achieved by focusing on the above equation (1. 16 ). Our results are presented in the
next Section 2 as follows.

• We compute Table 2 of the values for the Riemann-Liouville fractional derivative of
the generalized polylogarithm functions by considering parameter valuesµ = 3 and
s = 1

2
; 3

2
; −1

2
; −3

2
in Subsection 2.1.

• We compute Table 3 of values for the Riemann-Liouville fractional derivative of the general-
ized polylogarithm functions by considering parameter valuesµ = 4 ands = 1

2
; 3

2
; −1

2
; −3

2

in Subsection 2.2.

• We compute Table 4 of values for the Riemann-Liouville fractional derivative of the general-
ized polylogarithm functions by considering parameter valuesµ = 4 ands = 1

2
; 3

2
; −1

2
; −3

2

in Subsection 2.3.

• In these Tables namely Table 2; Table 3 and Table 4, the values obtained fors = −1
2

are
negative due to the factorΓ(−1

2
) occurring in the expression used to compute the values. In

each case the magnitude of the computed values is increasing in relation with the increasing
value of the parameterz. In the limiting casez → 1,this increase in the values of these
functions becomes suddenly more prominent.

• The obtained data is confirmed consistent by using our new mathematical model and the
known classical integral representations forµ = 3; 4; 5 ands = 1

2
; 3

2
.

• It is remarkable that for the positive values of parameters = 1
2
; 3

2
, our calculations are

consistent with the directly computed results by using their integral representation and 100%
accuracy is achieved.

• Moreover, from equation (1. 16 ), it is obvious that the involved integrals
R∞
0

ts−1e−3t

(1−ze−t)3
dt;

R∞
0

ts−1e−4t

(1−ze−t)4
dt and

R∞
0

ts−1e−5t

(1−ze−t)5
dt are not convergent for the negative values of para-

meters and in this research, we evaluate these integrals for these negative values.

2. RESULTS

2.1. Computation of the values of Riemann-Liouville fractional derivative of the generalized poly-
logarithm functions;µ = 3

Taking a = 1 in eqution (1), we get the following mathematical model to compute the values of
Riemann-Liouville fractional derivative of the generalized polylogarithm functions
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Z ∞

0

ts−1e−3t

(1− ze−t)3
dt =

Γ(s)

1.2.z3

�
Lis−2(z)− 3Lis−1(z) + 2Lis(z)

�
(2. 17)

Mathematical Language :(Gamma[s] (PolyLog[-2 + s, z] - 3 PolyLog[-1 + s, z] + 2 PolyLog[s, z]))/(2
z ˆ 3)=Integrate[tˆ (s− 1)(1/(Eˆ (3t)(1− z/Eˆ t)ˆ 3)), t, 0,∞]

TABLE 1. Computation of
R∞
0

ts−1e−3t

(1−ze−t)3
dt

s Direct Evaluation Using difference Equation (2. 17 )

z s = 1
2 s = 3

2 s = 1
2 s = 3

2 s = −1
2 s = −3

2
0.05 1.16912 0.18844 1.16912 0.18844 -7.33414 15.5601
0.10 1.34515 0.209228 1.34515 0.209228 -8.84585 19.9634
0.15 1.55988 0.233579 1.55988 0.233579 -10.7850 25.9708
0.20 1.82488 0.262356 1.82488 0.262356 -13.3094 34.3159
0.25 2.1562 0.296701 2.1562 0.296701 -16.6509 46.1467
0.30 2.57661 0.338149 2.57661 0.338149 -21.1580 63.3107
0.35 3.11914 0.388809 3.11914 0.388809 -27.3702 88.8786
0.40 3.83304 0.451641 3.83304 0.451641 -36.1484 128.145
0.45 4.79405 0.530908 4.79405 0.530908 -48.9194 190.640
0.50 6.12302 0.632935 6.12302 0.632935 -68.1515 294.395
0.55 8.02127 0.767454 8.02127 0.767454 -98.3405 475.638
0.60 10.8423 0.950096 10.8423 0.950096 -148.203 812.620
0.65 15.2484 1.20734 15.2484 1.20734 -235.997 1490.26
0.70 22.587 1.58713 22.587 1.58713 -403.907 2998.64
0.75 35.9122 2.18438 35.9122 2.18438 -762.886 6849.01
0.80 63.2609 3.21085 63.2609 3.21085 -1662.15 18797.5
0.85 131.017 5.2308 131.017 5.2308 -4539 68974.6
0.90 364.484 10.2551 364.484 10.2551 -18718.1 429985

0.95 2083.23 31.3818 2083.23 31.3818 -211264 9.78208 ∗ 106

0.96 2083.23 44.6709 2083.23 44.6709 -461105 2.67297 ∗ 107

0.97 7503.87 70.1447 7503.87 70.1447 −1.26146 ∗ 106 9.76527 ∗ 107

0.98 20725.9 131.66 20725.9 131.66 −5.21168 ∗ 106 6.06124 ∗ 108

0.99 117521 381.439 117521 381.439 −5.89342 ∗ 107 1.37297 ∗ 1010

0.995 665609 1093.54 665609 1093.54 −6.66599 ∗ 108 3.10835 ∗ 1011

0.996 1.16306 ∗ 106 1532.69 1.16306 ∗ 106 1532.69 −1.45555 ∗ 109 8.48539 ∗ 1011

0.997 2.38811 ∗ 106 2366.76 2.38811 ∗ 106 2366.76 −3.98375 ∗ 109 3.09701 ∗ 1012

0.998 6.58249 ∗ 106 4361.41 6.58249 ∗ 106 4361.41 −1.64661 ∗ 1010 1.92044 ∗ 1013

0.9999 1.17807 ∗ 1010 392556 1.17807 ∗ 1010 392556 −1.86283 ∗ 1011 1.37443 ∗ 1019

2.2. Computation of the values of Riemann-Liouville fractional derivative of the generalized poly-
logarithm functions;µ = 4

Taking a = 1 in eqution (1), we get the following mathematical model to compute the values of
Riemann-Liouville fractional derivative of the generalized polylogarithm functions

Z ∞

0

ts−1e−4t

(1− ze−t)4
dt =

Γ(s)

1.2.3.z4

�
Lis−3(z)− 6Lis−2(z) + 11Lis−1 + 6Lis(z)

�
(2. 18)

Mathematica Language :(Gamma[s] (PolyLog[-3 + s, z] -6PolyLog[-2 + s, z] +11 PolyLog[-1 + s, z]
-6 PolyLog[s, z]))/(3! ẑ 4) = Integrate[t̂ (s - 1) (1/(Ê (4 t) (1 - z/Ê t)ˆ 4)), t, 0, If∞]



Computation of the Values for the Riemann-Liouville Fractional Derivative of the Generalized Polylogarithm Functions 141

TABLE 2. Computation of
R∞
0

ts−1e−3t

(1−ze−t)4
dt

s Direct Evaluation Using difference Equation (2. 18 )

z s = 1
2 s = 3

2 s = 1
2 s = 3

2 s = −1
2 s = −3

2
0.05 1.06467 0.128268 1.06467 0.128268 -8.91807 25.1813
0.10 1.29163 0.149630 1.29163 0.149630 -11.3585 34.0541
0.15 1.58415 0.176002 1.58415 0.176002 -14.6693 46.8421
0.20 1.96679 0.208949 1.96679 0.208949 -19.2426 65.6712
0.25 2.47578 0.250665 2.47578 0.250665 -25.6898 94.0708
0.30 3.16576 0.304288 3.16576 0.304288 -34.9911 138.091
0.35 4.12159 0.374422 4.12159 0.374422 -48.7689 208.491
0.40 5.47925 0.467996 5.47925 0.467996 -69.8105 325.220
0.45 7.46487 0.595779 7.46487 0.595779 -103.112 527.115
0.50 10.4711 0.775137 10.4711 0.775137 -158.092 894.227
0.55 15.2160 1.03532.. 15.2160 1.03532.. -253.597 1603.21
0.60 23.0971 1.42826 23.0971 1.42826 -430.177 3077.49
0.65 37.0530 2.05242 37.0530 2.05242 -783.285 6441.89
0.70 63.9012 3.11053 63.9012 3.11053 -1564.87 15103.4
0.75 121.647 5.06797 121.647 5.06797 -3548.83 41344.5
0.80 267.205 9.1658 267.205 9.1658 -9670.74 141665
0.85 735.863 19.5357 735.863 19.5357 -35233.3 692244

0.90 3061.34 56.1024 3061.34 56.1024 -218083 6.46527 ∗ 106

0.95 34871 332.445 34871 332.445 −4.92608 ∗ 106 2.93813 ∗ 108

0.96 76253.7 586.669 76253.7 586.669 −1.34414 ∗ 107 1.00332 ∗ 109

0.97 209009 1217.01 209009 1217.01 −4.9036 ∗ 107 4.88613 ∗ 109

0.98 865191 3390.47 865191 3390.47 −3.03929 ∗ 108 4.54810 ∗ 1010
0.99 9.80288 ∗ 106 19399.5 9.80288 ∗ 106 19399.5 −6.87468 ∗ 109 2.05995 ∗ 1012

0.995 110989000 110393 110989000 110393 −1.55529 ∗ 1011 9.32617 ∗ 1013

0.996 2.42399 ∗ 108 193082 2.42399 ∗ 108 193082 −4.24512 ∗ 1011 3.18232 ∗ 1014

0.997 6.63561 ∗ 108 396842 6.63561 ∗ 108 396842 −1.54917 ∗ 1012 1.54862 ∗ 1015∗
0.998 2.74325 ∗ 109 1.09491 ∗ 106 2.74325 ∗ 109 1.09491 ∗ 106 −9.26312 ∗ 1012 1.4404 ∗ 1016

0.9999 9.81733 ∗ 1013 1.96325 ∗ 109 9.81733 ∗ 1013 1.96325 ∗ 109 −6.87226 ∗ 1018 2.06165 ∗ 1023

2.3. Computation of the values of Riemann-Liouville fractional derivative of the generalized poly-
logarithm functions;µ = 5

Taking a = 1 in eqution (1), we get the following mathematical model to compute the values of
Riemann-Liouville fractional derivative of the generalized polylogarithm functions

Z ∞

0

ts−1e−5t

(1− ze−t)5
dt =

Γ(s)

1.2.3.4.z5

�
Lis−4(z)− 10Lis−3(z)

+ 35Lis−2(z)− 50Lis−1 + 24Lis(z)

� (2. 19)

Mathematica Language :(Gamma[s] (PolyLog[-4 + s, z] -10PolyLog[-3 + s, z] +35PolyLog[-2 + s,
z] -50 PolyLog[-1 + s, z] +24 PolyLog[s, z]))/(4! ẑ 5)=Integrate[t̂ (s - 1) (1/(Ê (5 t) (1 - z/Eˆ
t)ˆ 5)), t, 0,∞]

3. FUTURE DIRECTIONS

Approximation of the values of special functions have always been remained an important aspect
for the analysis of special functions by using different representations. In this study, we performed
computational analysis for the Riemann-Liouville fractional derivative of the generalized polyloga-
rithm functions by using newly established difference equations. This analysis proved valuable to
compute the values of the these functions. The outcomes were also confirmed by using two different
approaches for the positive values ofs. By following the method, we can obtain significant new
results by considering the further specific values of the involved parameters. This is useful for the
further analysis of these functions by plotting the graphs and deriving different series and asymp-
totic representations, etc. This work is in progress and would be a part of some future research.
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TABLE 3. Computation of
R∞
0

ts−1e−5t

(1−ze−t)5
dt

s Direct Evaluation Using difference Equation (2. 19 )

z s = 1
2 s = 3

2 s = 1
2 s = 3

2 s = −1
2 s = −3

2
0.05 1.00171 0.0963229 1.00171 0.0963229 -10.4982 37.0118
0.10 1.28186 0.118236 1.28186 0.118236 -14.1175 52.7883
0.15 1.66344 0.146773 1.66344 0.146773 -19.3101 76.8167
0.20 2.19266 0.184499 2.19266 0.184499 -26.9206 114.328
0.25 2.9418 0.23523 2.9418 0.23523 -38.3469 174.540
0.30 4.02708 0.304772 4.02708 0.304772 -55.9772 274.287
0.35 5.6415 0.40222 5.6415 0.40222 -84.0436 445.605
0.40 8.11765 0.542277 8.11765 0.542277 -130.368 752.389
0.45 12.0537 0.74962 12.0537 0.74962 -210.124 1329.24
0.50 18.5808 1.06751 18.5808 1.06751 -354.486 2478.47
0.55 29.9702 1.57579 29.9702 1.57579 -632.011 4933.24
0.60 51.1251 2.43147 51.1251 2.43147 -1206.47 10644.9
0.65 93.6271 3.96801 93.6271 3.96801 -2511.42 25445.2
0.70 188.154 6.96732 188.154 6.96732 -5855.57 69545.6

0.75 429.275 13.5172 429.275 13.5172 -15940.5. 2.28272 ∗ 105

0.80 1177.05 30.2935 1177.05 30.2935 -54317.1 9.76943 ∗ 105

0.85 4315.64 85.2319 4315.64 85.2319 -263951 6.36015 ∗ 106

0.90 26887.8 362.85 26887.8 362.85 −2.45155 ∗ 106 8.90332 ∗ 107

0.95 611462 4238.35 611462 4238.35 −1.10794 ∗ 108 8.08601 ∗ 109

0.96 1.67075 ∗ 106 9317.75 1.67075 ∗ 106 9317.75 −3.77920 ∗ 108 3.45101 ∗ 1010

0.97 6.1036 ∗ 106 25679.5 6.1036 ∗ 106 25679.5 −1.83842 ∗ 109 2.24050 ∗ 1011

0.98 3.78836 ∗ 107 106896 3.78836 ∗ 107 106896 −1.709331010 3.12777 ∗ 1012

0.99 3.78836 ∗ 107 1.21814 ∗ 106 3.78836 ∗ 107 1.21814 ∗ 106 −7.73341 ∗ 1011 2.83286 ∗ 1014

0.995 1.94272 ∗ 1010 1.38324 ∗ 107 1.94272 ∗ 1010 1.38324 ∗ 107 −3.49926 ∗ 1013 2.56489 ∗ 1016

0.996 5.30337 ∗ 1010 3.02277 ∗ 107 5.30337 ∗ 1010 3.02277 ∗ 107 −1.19390 ∗ 1014 1.09399 ∗ 1017

0.997 1.93563 ∗ 1011 8.27966 ∗ 107 1.93563 ∗ 1011 8.27966 ∗ 107 −5.80925 ∗ 1014 7.09815 ∗ 1017

0.998 1.20027 ∗ 1012 3.42496 ∗ 108 1.20027 ∗ 1012 3.42496 ∗ 108 −5.40268 ∗ 1015 9.90302 ∗ 1018

0.9999 8.5902 ∗ 1017 1.22709 ∗ 1013 8.5902 ∗ 1017 1.22709 ∗ 1013 −7.73128 ∗ 1022 2.83478 ∗ 1027

This practice to acquire the data of values for these important functions by making use of our new
mathematical model explores the required simplicity that is always needed. It is mentionable that the
method established in this research is in fact noteworthy for the analysis and study of these higher
transcendental functions. Furthermore, this research will have future effects due to the following
important facts:

• The Riemann hypothesis is a well-known unsolved problem in analytic number theory [32].
It states that all the non-trivial zeros of the zeta function exist on the real lines = 1

2
. These

zeros seem to be complex conjugates and hence symmetric on this line. The integrals of the
zeta function and its generalizations are vital in the study of Riemann hypothesis and for the
investigation of zeta functions themselves.

• The study of distributions in statistical inference and reliability theory [13, 17] also involves
such integrals. By following the approach developed in this paper, we can initiate a deeper
analysis of these functions that will enhance their applications in the mentioned studies.

• These generalized functions have simple relations with the BoseEinstein and FermiDirac
functions [27, 29, 31, 20]. These functions are of basic importance in quantum statistics
that contracts by means of two specific categories of spin symmetry, that is, fermions and
bosons. Fitting together these functions here with the generalized polylogarithm functions
yields accurate values for these functions. While approximation of these integrals have
always remained a challenge in Quantum Physics.
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