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Abstract.:This article concerns existence of oscillatory solutions of the
conformable fractional equations with damping of the form

(8)
(e <y(a>)v) (5)+g(s,27(s)) =0, forallseJy,
wherey(®) denotes conformable fractional(s) = = (s) + h (s) z¢ (z),

2k+1 .
2m+1,WIthk,m€N, Jo = [0,00) and

Ty =TOo,Te=x0& 7 =

a, € (0,1].
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1. INTRODUCTION

Consider the conformable fractional equations with damping of the form

(8)
(¢(v)) " () +g (s () =0,  foralls e, (. 1)
wherey(®) denotes conformable fractional defined in [2Q]s) := 2 (s) + h (s) z¢ (s),
2k+1

Ty, =T Op, Y= T with k,m € N, Jy = [0,00) ande, 8 € (0, 1]. Equation(1.1)
will be studied under the following assumptions:
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(C1) g: JoxR — R,suchthay € C (Jo x R,R),zg(s,x) > 0, forall (s,z) € JoxR
and there ig: € C (Jy, Jp), such that

g9(s )
X
(Cs) €,h, & e C(Jy,Jo), such agu and¢ tends to+oo, for s large enough, and

E(s) <s<pu(s) forall s € Jy.

The solution of equatiofiL.1) we mean a nontrivial real-valued function
y € C ([T, +0),R) and¢ (y()” € C? ([T}, +o0),R), T, > 0, which satisfieg1.1)
on[T,,+o0).

The theory of the conformable fractional derivative was introduced by Khalil et al. [20]
to generalize the differentiation operator in order to obtain the local fractional derivative
such aso ¢ N. Some articles are very interesting on the topics of fractional derivatives
compliant see [7, 23] and the references therein.

In recent years, many research activities have been conducted on the oscillation of dif-
ferential equations, including the theory of the oscillation of differential equations are ap-
plied to the study of oscillation phenomena in the fields of technology, natural sciences
and social sciences. For example, in medicine (cardiac sinusoidal rhythm), electricity (free
oscillations of anLC? circuit), physics (the theory of fluid dynamics in astrophysics) and
in chemistry (oscillating reactions-chemical waves), etc. In recent years, many research ac-
tivities have been conducted on the oscillation of solutions of various dynamic equations.

> c(s) forall (s,z) € Jo x R\ {0}.

2. PRELIMINARIES

In the first part of the preliminary, we present the definition and properties ofithe
differentiable andv integral in the conformal sense, puls to see [20].
We denote
Jso = [80,00) for all sg € [0,0).

Definition 2.1. [20] Letw : Jo— Randa € (0, 1], We defind,, (u) (s) to be the number,
provided it exists, such that

11—«
T, (u) (8) := lim ulstes’™) —uls)
e—0 £
Often, we writeu(®) instead ofT,, (u) to designate theonformable fractional derivative
of u of ordera.
In addition, ifu(®) exists, then we simply say thats a-differentiable.
If » is a-differentiable in some € (0,a), a > 0, and 11%1+Ta (u) (s) exists then we define

for all s € Jj.

u(™ (0) = S£%1+Ta (u) (s).

Letw : Jo— Randa € (0,1]. Theconformable fractional integral of « of ordera
from a tos, denoted by & (u) (s), is defined by

)= [ 2= [Cu)dar

where the above integral is the usual improper Riemann integral.
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Theorem 2.2. [20] Leta € (0, 1] and assume, v to bea-differentiable. Then,

(1) T, (au + bv) = aTy, (u) + bT,, (v) forall a,b € R,
(2) To (wv) = uTy (v) + Ty (u) v,

(3) T (%) = 5 (Tu (w0 — T ()
If, in addition, « is differentiable at a point > 0, thenT, (u) = s*~“u’ (s).
Remark 2.3. By Theorem 2.2 it follows thatif € C! (.J,,R), then one has
lim T, (u) (s) = u' (s), forallseJ,.
Theorem 2.4. If v is a continuous function in the domain &f, then

To (ISu(s)) =u(s), foralls>a.

3. AUXILIARY RESULT

Before stating the main results, the following definition and lemma are used.

Definition 3.1. Letu : Jy — R, we say that is non-oscillating onJy, If one of the
conditions is true

i) x(s) > 0, for s large enough.
1) x (s) < 0, for s large enough.

Otherwise it is oscillating.
Let « € (0, 1], for simplification, we note
C (Jo,R) := {u . Jo — R : u is a~differentiable and:(®) & C (Jo, R)} .
We put
E(Jo,R) :={z: Jy — R, such as: (s) > 0, for s large enough.

Lemma 3.2. [31] Letu € C® (Jy,R), such thatu(® (s) > 0, for all s € Jy, thenu is
increasing onJj.

Lemma 3.3. If z is a solution of(1.1), such as: € £ (Jy, R). Then there are the following
two cases, fos € J;,, wheres, > 0 sufficiently large

W (t@))” ) <09 () > 0,

@ (¢w))"” (5) < 0.9 (5) <0

Proof. If z € £ (Jo,R), then it existss, € Jy, such ase, (s) > 0, forall s > s,. From
(1.1) and(C4), we have

(g (y(a))w>(ﬁ) (5) < —c(s)x) (s) <0 forall s € Js,.

According to the Lemma 3.2, deduce that the funcijoh is constant sign eventually.J
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4. OSCILLATION RESULTS
In this section, we use the preceding hypotnosed and some sufficient conditions to find
that each solution of equatidi.1) is oscillating.

Theorem 4.1. Assume that there exist functiopss € C” (Jy, Jo), such as,s, large
enough,

lim I’ ¥ (s)=0c0 and  lim I? ®(s) = occ. 4. 2)

§— 00 §—00

where

s7B=)p (s) [Q(f) (S)} 1+

(y+1)" 07 (5)

So each solution of equation(1.1) is oscillating.

Proof. Suppose instead thatis a solution of(1.1), such as € £ (Jp, R).
So there iss,. € Jy, such as

z(s) >0, z¢(s)>0 and z,(s)>0, forallse Js,.

Suppose first thaf satisfies(1) of lemma 3.3.

Let
L) () (s)
O(s) :=o0(s) (o) , forall s € Jg, .
Then® € C (J,,, Jo). From Theorem 2.2, we have
M B
ooy @ )T ) 60 6) 6P )

07 (s) o0) ©(s) +o(s) ) 2(s) 7 (5)

B

IN




Conformable Fractional Differential Equations

7

From Theorem 2.4, we have

12 (59" (5))

then, we get

v s = o (2 )}

= Py B ().

(4. 3)

Therefore, ify(®) € C (J,,, Jo), by Lemma 3.2, we havgis a increasing function of .

As ¢ (s) > s, we obtain

a (s)

Il
<
—~

V)
~—

I

>
—
VA
~
]
o
—
»
~—

(AVANLY]

Thus,

0w (s) < M@ (s)—o(s)[1—hy(s)] — 1787_56“% (s).

o(s) 07 (s) 07 (s)
Using inequality [5]

@ A1+a
Aw— Ba'tw < —
(1+a) « Ba

forall z, A, B,a > 0.

Then

57(6—a)g(s) {ngi) (s)} 1+~

(y+1)" o7 (s)

0 (s) = —o(s)[L — h, (s)]" +

Then, we obtain
LLW(s) < —1]0W(s)<~0(s) + O (s:)
< O(s4),
which contradicts witr{4.2).
Secondly suppose thglsatisfies(2)70f lemma 3.3.

=-U(s).

(4. 4)

By (1.1), then the functiorf (y()) " is decreasing od,, therefore, for any- > s > s,

we have

Yy (r) < {ﬁéi; }i Yy (s),
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from Theorem 2.4, we have

y(s) —{6<s>}#y<a>(s>/gw{£(17>}ida7

>
= —{)}7 Lals)y™ (s), (4.5)
by Theorem 2.2, we get
(a)s=slfa/s=—i% .
e ) = sl o) =~ { 775} @.6)
then “ “
y(5) ' _ ¢ (5)Ta(s) —y(s) T (s)
(&%) - F2(s) .
So the functionri is decreasing od_, then
z(s) = y(s)—h(s)ye(s)
IS O
> [1 b S ]ym. (4.7)
We havethe functiop is decreasing od;, . As i (s) < s, we obtain
ey D €GN
s = [1=ne) Sl )
tuen Da GG
N OE o K 9
We pose
[ ) 1 .
V(s):= ()[ o) +FZ($)] forall s € J;,,

by (4.5), thenV (s) > 0, for all s € J,,. Applying Theorem 2.4, we find the following
relationship

VO () = Sy g [HLONED L "
< S kel B
ot UL T
In view (4.3) and (4.8), we find
VO (s) < "”“ffifv 5) = (s)e(s) jgi
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Using inequality [25],
(A—B)“%2A1+%_BT[(7+1)A—B] AB > 0.

If we choose

As =V (s) and B :=
We obtain the following inequality,
v a—p (8)
() L (+1)s " (s)]v(s)

VO (s) < —k(s)e(s)

- Y7 (s) T (s) k7 (s)Ty (s) £ (S)
ys 8 s (5 (s) 5o
1V (s 1 -1 I
05 (s) k7 (s) ( )HF?X* (5) 07 (s)k7 (s)TLT (s)
By (4.7) and(4.7), we obtain
V() S (66 i s e
(v+1)s*" k) (s) SRy e
1 1 + 1% (3) - 3 T ) 2t (S)
[Ew (s)k™ (5) Ty () K (s) 07 (s) K7 (8)

Using inequality(4.4), we get

VO () < ()1 () — ) + 97 () DA LT gy,

Then, we obtain
122 (s) < —1L VP (5) < V(s.).

which contradicts with{4.2). O
Theorem 4.2. Assume that there a functigne C? (Jy, Jo) such as
lim I8 (s) =+00  and  lim I® (e—% (s)) = +o0. (4. 9)

So each solutior of equation(1.1) is oscillating.

Proof. Suppose instead thatsolution to an equatiofil.1), such ast € £ (Jy, R).
So there i, > 0, such as

z(s) >0, z¢(s)>0 and z,(s)>0 forallseJs,.

By Equ(1.1), we deduce that functioh(y(®)) is decreasing od,, and from it we find
that function? (y(a))7 € C(Js,,Jo). If not, it means there is € J,, such as

€(s) (y(o’))7 (s) < —o  forallse Js,
whereos > 0. Then, we obtain

e (y(a) (5)) < —oIo ([Tl (5)) forall s € Js,
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Thus the following inequality can be concluded
y(s) <y(s) —old (5771 (s)) forall s € Js,

this givesy (s) tends to—oo, for s large enough, which gives the contradiction witfs) >
0, for s large enough.
We have found ok € J; , wheres, > 0 sufficiently large

Y@ (s) >0, fors e J,.

We conclude that there is one case, this ddgeof lemma 3.3. The proof is the same as
that of Cas€1) in Theorem 4.1, and so is omitted. This completes the proof. O

5. EXAMPLES
In the following, we illustrate possible applications with two example

Example 5.1. Consider the differential equation following

l(z(s) #3505 0)) D"

+5 320, (s) =0  forall s € Jp, (5. 10)
1 1 s
here,a = §,ﬁ: 1,7:1,5(3):§,u(s):2sand€(s):17h(s):

1
1 2
Thenc (s) = — and we have
S

I3 (5_% («9)) — 12 (1) = / 5712 ds o~ ?, for s large enough.

Sx

) (s) = si and

=

Setp (s) := s, we getg(

—_

U(s) = (25—3%), forall s € Jo.

W

Then

8 st
I W (s) ~ 10’ for s large enough,

Thus,(4.9) hold. By Theorem 4.2, equati@h.10) is oscillatory.

Example 5.2. Consider a second-order half-linear delay dynamic equation

[z (s) + Az (%)]” + 5% (25) =0 forall s € Jy, (5. 11)
herea =p3=7=1,£(s) = 2 wn(s) =2s,0(s) =1,andh (s) = X € (0,1).

2
Thenc (s) = s? and we have

I8 (63 (9) = L (1) = (5 = 5.) =
Setp (s) := 1, we get

, for s large enough.

[NCR VA

U(s)=1-A, forall s € Jp.
Then
LW (s)=IW(s)=(1—N)s, forallse ..
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Thus,(4.9) hold. By Theorem 4.2, equati@h.11) is oscillatory.

6. CONCLUSION

In the manuscript, we have studied the oscillations of the solutions of the conformable
fractional equations with damping, it's a generalization of the equation of the form

)™ (5)+ g (s, () =0 foralls € Jp,
as particular case, far = 5 = 1.

(1)
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