Abstract
Although work has been done in Urdu Sentiment Analysis by researchers but still there is a lot of room for
improvement in the form of achieving higher accuracy. Therefore, in this research, the accuracy of Urdu
Sentiment Analysis in multiple domains is enhanced by dealing negations using Lexicon-based approach, one
of the broadly used approaches for performing Sentiment Analysis. Negations in Urdu Sentiment Analysis are
particularly focused in this research because of their effective role in Sentiment Analysis. Both local and long
distance negations are considered. For achieving this goal, a corpus with 6025 Urdu sentences, from 151 blogs
that belong to 14 different genres is taken in which use of negations is carefully observed. Two major steps are
taken in this regard. First, to deal with the morphological negations, this type of negations is included in the
negative word file of the Urdu Sentiment Lexicon developed for performing Sentiment Analysis of Urdu blogs.
Secondly, rule-based approach is used for handling the implicit and explicit negations. Rules are designed that
can deal with both implicit and explicit negations effectively. Implementation of these rules increased the
accuracy of Sentiment Analyzer from 73.88% to 78.32% with 0.745, 0.788 and 0.745 Precision, Recall and Fmeasure respectively, which is statistically significant improvement.
Neelam Mukhtar, Shah Nazir, Mohammad Abid Khan , Asim Ullah Jan, Nadia Chiragh. (2020) Recognition and Effective Handling of Negations in Enhancing the Accuracy of Urdu Sentiment Analyzer , Mehran University Research Journal of Engineering & Technology, Volume 39, Issue 4.
-
Views
632 -
Downloads
47
Article Details
Volume
Issue
Type
Language