Abstract
Background: DNA barcoding is a novel method of species identification based on nucleotide diversity of conserved sequences. The establishment and refining of plant DNA barcoding systems is more challenging due to high genetic diversity among different species. Therefore, targeting the conserved nuclear transcribed regions would be more reliable for plant scientists to reveal genetic diversity, species discrimination and phylogeny.
Methods: In this study, we amplified and sequenced the chloroplast DNA regions (matk+rbcl) of Solanum nigrum, Euphorbia helioscopia and Dalbergia sissoo to study the functional annotation, homology modeling and sequence analysis to allow a more efficient utilization of these sequences among different plant species. These three species represent three families; Solanaceae, Euphorbiaceae and Fabaceae respectively. Biological sequence homology and divergence of amplified sequences was studied using Basic Local Alignment Tool (BLAST).
Results: Both primers (matk+rbcl) showed good amplification in three species. The sequenced regions reveled conserved genome information for future identification of different medicinal plants belonging to these species. The amplified conserved barcodes revealed different levels of biological homology after sequence analysis. The results clearly showed that the use of these conserved DNA sequences as barcode primers would be an accurate way for species identification and discrimination.
Conclusion: The amplification and sequencing of conserved genome regions identified a novel sequence of matK in native species of Solanum nigrum. The findings of the study would be applicable in medicinal industry to establish DNA based identification of different medicinal plant species to monitor adulteration.
Javed Iqbal Wattoo, Muhammad Zafar Saleem, Muhammad Saqib Shahzad, Amina Arif, Amir Hameed, Mushtaq Ahmad Saleem. (2016) DNA Barcoding: Amplification and sequence analysis of rbcl and matK genome regions in three divergent plant species, Advancements in Life Sciences, Volume 4, Issue 1.
-
Views
1158 -
Downloads
134