Abstract
In this paper, a three pronged solution to faculty evaluation is proposed. Almost in every university, faculty and course evaluations are filled by students after the completion of courses. Due to the large volume of such evaluations, it becomes very difficult for management to carefully analyze them. This paper proposes a framework based on machine learning techniques that can be adopted for effective evaluation of faculty. It uses k-means clustering to group the evaluations and points out the specific area on which management needs to work on with faculty. Along with the quantitative evaluation of faculty, students also provide feedback in the form of comments. The proposed solution performs sentiment analysis on those comments. If there is a high emotion (positive or negative) associated with comments, an email can be sent in real-time to higher management. Another important component of proposed solution is providing summary of the topics discussed in the lectures via transcribing their recorded lecture and then applying machine learning on transcripts.

Noman Islam . (2018) A Novel Framework Using Machine Learning to Effectively Analyze the Faculty Evaluations, Journal of Education & Social Sciences, Volume 6, Issue 2.
  • Views 1105
  • Downloads 131

Article Details

Volume
Issue
Type
Language